Based on a prediction method for improving WOA-Elman air quality prediction

Zhuang Chen, Dingwen Cai
{"title":"Based on a prediction method for improving WOA-Elman air quality prediction","authors":"Zhuang Chen, Dingwen Cai","doi":"10.1145/3448734.3450773","DOIUrl":null,"url":null,"abstract":"Aiming at the problem that the Elman neural network is easy to fall into the local optimal solution when predicting air quality indicators, the prediction accuracy is low. A prediction model combining the PCA of meteorological factors and the improved whale optimization algorithm IWOA Elman neural network is proposed. Use PCA to extract the main components that affect the air quality index as the input variables of the Elman neural network, use the initial population optimization and the introduction of inertial weights to optimize WOA, enhance the global search ability and convergence speed, and then proceed to get the weight and value of the Elman neural network and optimize the threshold. The results show that the prediction error of this model is better than the single Elman model, PCA-Elman model, IWOA-Elman model and BP model. The model is based on Chongqing air quality data and meteorological data for experiments, which provides a realistic reference for air quality index research.","PeriodicalId":105999,"journal":{"name":"The 2nd International Conference on Computing and Data Science","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2nd International Conference on Computing and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3448734.3450773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Aiming at the problem that the Elman neural network is easy to fall into the local optimal solution when predicting air quality indicators, the prediction accuracy is low. A prediction model combining the PCA of meteorological factors and the improved whale optimization algorithm IWOA Elman neural network is proposed. Use PCA to extract the main components that affect the air quality index as the input variables of the Elman neural network, use the initial population optimization and the introduction of inertial weights to optimize WOA, enhance the global search ability and convergence speed, and then proceed to get the weight and value of the Elman neural network and optimize the threshold. The results show that the prediction error of this model is better than the single Elman model, PCA-Elman model, IWOA-Elman model and BP model. The model is based on Chongqing air quality data and meteorological data for experiments, which provides a realistic reference for air quality index research.
基于改进WOA-Elman空气质量预测方法的研究
针对Elman神经网络在预测空气质量指标时容易陷入局部最优解的问题,预测精度较低。提出了一种将气象因子主成分分析与改进的鲸鱼优化算法IWOA Elman神经网络相结合的预测模型。利用PCA提取影响空气质量指数的主要成分作为Elman神经网络的输入变量,利用初始种群优化和引入惯性权值对WOA进行优化,增强全局搜索能力和收敛速度,进而得到Elman神经网络的权值和值,并对阈值进行优化。结果表明,该模型的预测误差优于单一Elman模型、PCA-Elman模型、IWOA-Elman模型和BP模型。该模型基于重庆市空气质量数据和气象数据进行实验,为空气质量指数研究提供了现实参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信