G. Khodabandelou, Vincent Gauthier, M. El-Yacoubi, M. Fiore
{"title":"Population estimation from mobile network traffic metadata","authors":"G. Khodabandelou, Vincent Gauthier, M. El-Yacoubi, M. Fiore","doi":"10.1109/WoWMoM.2016.7523554","DOIUrl":null,"url":null,"abstract":"Smartphones and other mobile devices are today pervasive across the globe. As an interesting side effect of the surge in mobile communications, mobile network operators can now easily collect a wealth of high-resolution data on the habits of large user populations. The information extracted from mobile network traffic data is very relevant in the context of population mapping: it provides a tool for the automatic and live estimation of population densities, overcoming the limitations of traditional data sources such as censuses and surveys. In this paper, we propose a new approach to infer population densities at urban scales, based on aggregated mobile network traffic metadata. Our approach allows estimating both static and dynamic populations, achieves a significant improvement in terms of accuracy with respect to state-of-the-art solutions in the literature, and is validated on different city scenarios.","PeriodicalId":187747,"journal":{"name":"2016 IEEE 17th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM)","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 17th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WoWMoM.2016.7523554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42
Abstract
Smartphones and other mobile devices are today pervasive across the globe. As an interesting side effect of the surge in mobile communications, mobile network operators can now easily collect a wealth of high-resolution data on the habits of large user populations. The information extracted from mobile network traffic data is very relevant in the context of population mapping: it provides a tool for the automatic and live estimation of population densities, overcoming the limitations of traditional data sources such as censuses and surveys. In this paper, we propose a new approach to infer population densities at urban scales, based on aggregated mobile network traffic metadata. Our approach allows estimating both static and dynamic populations, achieves a significant improvement in terms of accuracy with respect to state-of-the-art solutions in the literature, and is validated on different city scenarios.