Population estimation from mobile network traffic metadata

G. Khodabandelou, Vincent Gauthier, M. El-Yacoubi, M. Fiore
{"title":"Population estimation from mobile network traffic metadata","authors":"G. Khodabandelou, Vincent Gauthier, M. El-Yacoubi, M. Fiore","doi":"10.1109/WoWMoM.2016.7523554","DOIUrl":null,"url":null,"abstract":"Smartphones and other mobile devices are today pervasive across the globe. As an interesting side effect of the surge in mobile communications, mobile network operators can now easily collect a wealth of high-resolution data on the habits of large user populations. The information extracted from mobile network traffic data is very relevant in the context of population mapping: it provides a tool for the automatic and live estimation of population densities, overcoming the limitations of traditional data sources such as censuses and surveys. In this paper, we propose a new approach to infer population densities at urban scales, based on aggregated mobile network traffic metadata. Our approach allows estimating both static and dynamic populations, achieves a significant improvement in terms of accuracy with respect to state-of-the-art solutions in the literature, and is validated on different city scenarios.","PeriodicalId":187747,"journal":{"name":"2016 IEEE 17th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM)","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 17th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WoWMoM.2016.7523554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

Abstract

Smartphones and other mobile devices are today pervasive across the globe. As an interesting side effect of the surge in mobile communications, mobile network operators can now easily collect a wealth of high-resolution data on the habits of large user populations. The information extracted from mobile network traffic data is very relevant in the context of population mapping: it provides a tool for the automatic and live estimation of population densities, overcoming the limitations of traditional data sources such as censuses and surveys. In this paper, we propose a new approach to infer population densities at urban scales, based on aggregated mobile network traffic metadata. Our approach allows estimating both static and dynamic populations, achieves a significant improvement in terms of accuracy with respect to state-of-the-art solutions in the literature, and is validated on different city scenarios.
基于移动网络流量元数据的人口估计
如今,智能手机和其他移动设备在全球无处不在。作为移动通信激增的一个有趣的副作用,移动网络运营商现在可以很容易地收集大量用户习惯的高分辨率数据。从移动网络流量数据中提取的信息在人口测绘的背景下是非常相关的:它为人口密度的自动和实时估计提供了一种工具,克服了人口普查和调查等传统数据源的局限性。在本文中,我们提出了一种基于聚合移动网络流量元数据推断城市尺度人口密度的新方法。我们的方法可以估计静态和动态人口,相对于文献中最先进的解决方案,在准确性方面取得了显著的进步,并在不同的城市场景中得到了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信