New perspectives and applications of real-time fuzzy regression

A. A. Ramli, J. Watada, W. Pedrycz
{"title":"New perspectives and applications of real-time fuzzy regression","authors":"A. A. Ramli, J. Watada, W. Pedrycz","doi":"10.1109/FUZZY.2009.5277160","DOIUrl":null,"url":null,"abstract":"Fuzzy regression is one of important methods for data analysis. Fuzzy regression extends the concept of classical regression which has been constructed in the statistical framework. We show that a convex hull method can provide a powerful tool to reduce the computing time, especially for real-time data analysis. The main objective of this study is to propose an efficient real-time fuzzy regression analysis based on the use of convex hull, specifically a Beneath-Beyond algorithm. The reconstruction of convex hull edges depends on incoming vertices while a recomputing procedure can be implemented in real-time. An air pollution data is analyzed by applying the proposed approach. An important role of convex hull is emphasized in particular when dealing with the limitations of linear programming.","PeriodicalId":117895,"journal":{"name":"2009 IEEE International Conference on Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2009.5277160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Fuzzy regression is one of important methods for data analysis. Fuzzy regression extends the concept of classical regression which has been constructed in the statistical framework. We show that a convex hull method can provide a powerful tool to reduce the computing time, especially for real-time data analysis. The main objective of this study is to propose an efficient real-time fuzzy regression analysis based on the use of convex hull, specifically a Beneath-Beyond algorithm. The reconstruction of convex hull edges depends on incoming vertices while a recomputing procedure can be implemented in real-time. An air pollution data is analyzed by applying the proposed approach. An important role of convex hull is emphasized in particular when dealing with the limitations of linear programming.
实时模糊回归的新视角与应用
模糊回归是数据分析的重要方法之一。模糊回归扩展了在统计框架下构建的经典回归概念。我们证明了凸包方法可以提供一个强大的工具,以减少计算时间,特别是实时数据分析。本研究的主要目的是提出一种基于凸包的高效实时模糊回归分析,特别是一种超越算法。凸壳边缘的重建依赖于输入的顶点,而重新计算过程可以实时实现。应用所提出的方法对一个空气污染数据进行了分析。在处理线性规划的局限性时,特别强调凸包的重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信