Performance compensation of GMR-based magnetic azimuth measurement system

Xueli Zheng, Jingqi Fu
{"title":"Performance compensation of GMR-based magnetic azimuth measurement system","authors":"Xueli Zheng, Jingqi Fu","doi":"10.1109/CCDC.2012.6244519","DOIUrl":null,"url":null,"abstract":"The magnetic azimuth is one of the important parameters of the directional navigation. This paper proposes a magnetic azimuth measurement system based on the GMR sensor. With the thoughts of information fusion, we study the performance compensation method of magnetic azimuth measurement system based on the radial basis function (RBF) neural network and the BP neural network, and then establish a coupling disturbance compensation model of the magnetic field and the temperature. The experimental results illustrate that the maximum full-scale error of sensor output without compensation is ±21.3%, and the maximum full-scale error after the coupling compensation of the BP neural network and the RBF neural network are ±2.72% and ±0.52% respectively.","PeriodicalId":345790,"journal":{"name":"2012 24th Chinese Control and Decision Conference (CCDC)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 24th Chinese Control and Decision Conference (CCDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC.2012.6244519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The magnetic azimuth is one of the important parameters of the directional navigation. This paper proposes a magnetic azimuth measurement system based on the GMR sensor. With the thoughts of information fusion, we study the performance compensation method of magnetic azimuth measurement system based on the radial basis function (RBF) neural network and the BP neural network, and then establish a coupling disturbance compensation model of the magnetic field and the temperature. The experimental results illustrate that the maximum full-scale error of sensor output without compensation is ±21.3%, and the maximum full-scale error after the coupling compensation of the BP neural network and the RBF neural network are ±2.72% and ±0.52% respectively.
磁磁方位测量系统的性能补偿
磁方位角是定向导航的重要参数之一。提出了一种基于GMR传感器的磁方位测量系统。利用信息融合的思想,研究了基于径向基函数(RBF)神经网络和BP神经网络的磁方位测量系统性能补偿方法,建立了磁场与温度的耦合扰动补偿模型。实验结果表明,无补偿传感器输出的最大满量程误差为±21.3%,BP神经网络和RBF神经网络耦合补偿后的最大满量程误差分别为±2.72%和±0.52%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信