Estimating the Mixed Logit Model by Maximum Simulated Likelihood and Hierarchical Bayes

Deniz Akinc, M. Vandebroek
{"title":"Estimating the Mixed Logit Model by Maximum Simulated Likelihood and Hierarchical Bayes","authors":"Deniz Akinc, M. Vandebroek","doi":"10.2139/ssrn.3052293","DOIUrl":null,"url":null,"abstract":"In this study, we compare the parameter estimates of the mixed logit model obtained with maximum likelihood and with hierarchical Bayesian estimation. The choice of the priors in Bayesian estimation and of the type and the number of quasi-random draws for maximum likelihood estimation have a big impact on the estimates. Our main focus is on the effect of the prior for the covariance matrix in hierarchical Bayes estimation. We investigate several priors such as Inverse Wisharts, the Separation Strategy, Scaled Inverse Wisharts and the Huang Half-t priors and we compute the root mean square errors of the resulting estimates for the mean, covariance matrix and individual parameters in a large simulation study. We show that the default settings in many software packages can lead to very unreliable results and that it is important to check the robustness of the results.","PeriodicalId":242950,"journal":{"name":"ERN: Truncated & Censored Models (Single) (Topic)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Truncated & Censored Models (Single) (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3052293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we compare the parameter estimates of the mixed logit model obtained with maximum likelihood and with hierarchical Bayesian estimation. The choice of the priors in Bayesian estimation and of the type and the number of quasi-random draws for maximum likelihood estimation have a big impact on the estimates. Our main focus is on the effect of the prior for the covariance matrix in hierarchical Bayes estimation. We investigate several priors such as Inverse Wisharts, the Separation Strategy, Scaled Inverse Wisharts and the Huang Half-t priors and we compute the root mean square errors of the resulting estimates for the mean, covariance matrix and individual parameters in a large simulation study. We show that the default settings in many software packages can lead to very unreliable results and that it is important to check the robustness of the results.
用最大模拟似然和层次贝叶斯估计混合Logit模型
在本研究中,我们比较了最大似然估计和层次贝叶斯估计得到的混合logit模型的参数估计。贝叶斯估计中先验的选择以及极大似然估计中拟随机抽取的类型和数量的选择对贝叶斯估计有很大的影响。我们主要关注的是在层次贝叶斯估计中先验对协方差矩阵的影响。我们研究了几种先验,如逆Wisharts、分离策略、缩放逆Wisharts和Huang Half-t先验,并在大型模拟研究中计算了平均值、协方差矩阵和单个参数的结果估计的均方根误差。我们表明,许多软件包中的默认设置可能导致非常不可靠的结果,并且检查结果的稳健性非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信