{"title":"Quipu: High-performance simulation of quantum circuits using stabilizer frames","authors":"Héctor J. García, I. Markov","doi":"10.1109/ICCD.2013.6657072","DOIUrl":null,"url":null,"abstract":"As quantum information processing gains traction, its simulation becomes increasingly significant for engineering purposes - evaluation, testing and optimization - as well as for theoretical research. Generic quantum-circuit simulation appears intractable for conventional computers. However, Gottesman and Knill identified an important subclass, called stabilizer circuits, which can be simulated efficiently using group-theory techniques. Practical circuits enriched with quantum error-correcting codes and fault-tolerant procedures are dominated by stabilizer subcircuits and contain a relatively small number of non-stabilizer components. Therefore, we develop new group-theory data structures and algorithms to simulate such circuits. Stabilizer frames offer more compact storage than previous approaches but requires more sophisticated bookkeeping. Our implementation, called Quipu, simulates certain quantum arithmetic circuits (e.g., ripple-carry adders) in polynomial time and space for equal superpositions of n-qubits. On such instances, known linear-algebraic simulation techniques, such as the (state-of-the-art) BDD-based simulator QuIDDPro, take exponential time. We simulate various quantum Fourier transform and quantum fault-tolerant circuits with Quipu, and the results demonstrate that our stabilizer-based technique outperforms QuIDDPro in all cases.","PeriodicalId":398811,"journal":{"name":"2013 IEEE 31st International Conference on Computer Design (ICCD)","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 31st International Conference on Computer Design (ICCD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD.2013.6657072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
As quantum information processing gains traction, its simulation becomes increasingly significant for engineering purposes - evaluation, testing and optimization - as well as for theoretical research. Generic quantum-circuit simulation appears intractable for conventional computers. However, Gottesman and Knill identified an important subclass, called stabilizer circuits, which can be simulated efficiently using group-theory techniques. Practical circuits enriched with quantum error-correcting codes and fault-tolerant procedures are dominated by stabilizer subcircuits and contain a relatively small number of non-stabilizer components. Therefore, we develop new group-theory data structures and algorithms to simulate such circuits. Stabilizer frames offer more compact storage than previous approaches but requires more sophisticated bookkeeping. Our implementation, called Quipu, simulates certain quantum arithmetic circuits (e.g., ripple-carry adders) in polynomial time and space for equal superpositions of n-qubits. On such instances, known linear-algebraic simulation techniques, such as the (state-of-the-art) BDD-based simulator QuIDDPro, take exponential time. We simulate various quantum Fourier transform and quantum fault-tolerant circuits with Quipu, and the results demonstrate that our stabilizer-based technique outperforms QuIDDPro in all cases.