Analysis of Audio Features for Music Representation

Rhythm Bhatia, Saumya Srivastava, V. Bhatia, Manpreet Singh
{"title":"Analysis of Audio Features for Music Representation","authors":"Rhythm Bhatia, Saumya Srivastava, V. Bhatia, Manpreet Singh","doi":"10.1109/ICRITO.2018.8748783","DOIUrl":null,"url":null,"abstract":"In this paper we have evaluated the ability and importance of audio feature sets. We have used six general audio classes which includes some speech data, instrumental data and general music of different genres. The feature sets include low-level signal properties, Mel-frequency cepstral coefficients, group delay (phase based information), Chromaprint (bit level based features), audio fingerprints. The phase and magnitude features analysis is done based on the auditory perception.","PeriodicalId":439047,"journal":{"name":"2018 7th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO)","volume":"208 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 7th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRITO.2018.8748783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper we have evaluated the ability and importance of audio feature sets. We have used six general audio classes which includes some speech data, instrumental data and general music of different genres. The feature sets include low-level signal properties, Mel-frequency cepstral coefficients, group delay (phase based information), Chromaprint (bit level based features), audio fingerprints. The phase and magnitude features analysis is done based on the auditory perception.
音乐表现的音频特征分析
在本文中,我们评估了音频特征集的能力和重要性。我们使用了六个通用音频类,其中包括一些语音数据,器乐数据和不同类型的通用音乐。特征集包括低电平信号属性、mel频率倒谱系数、群延迟(基于相位的信息)、Chromaprint(基于比特级的特征)、音频指纹。在听觉感知的基础上进行了相位和幅度特征分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信