{"title":"On an exponentially decaying diffusive chemotaxis system with indirect signals","authors":"Pan Zheng, Jie Xing","doi":"10.3934/cpaa.2022044","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>This paper deals with an exponentially decaying diffusive chemotaxis system with indirect signal production or consumption</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\"FE1\"> \\begin{document}$ \\begin{eqnarray*} \\label{1a} \\left\\{ \\begin{split}{} &u_t = \\nabla\\cdot(D(u)\\nabla u)-\\nabla\\cdot(S(u)\\nabla v), &(x,t)\\in \\Omega\\times (0,\\infty), \\\\ &v_t = \\Delta v+h(v,w), &(x,t)\\in \\Omega\\times (0,\\infty), \\\\ &w_t = \\Delta w- w+u, &(x,t)\\in \\Omega\\times (0,\\infty), \\end{split} \\right. \\end{eqnarray*} $\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>under homogeneous Neumann boundary conditions in a smoothly bounded domain <inline-formula><tex-math id=\"M1\">\\begin{document}$ \\Omega\\subset \\mathbb{R}^{n} $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M2\">\\begin{document}$ n\\geq2 $\\end{document}</tex-math></inline-formula>, where the nonlinear diffusivity <inline-formula><tex-math id=\"M3\">\\begin{document}$ D $\\end{document}</tex-math></inline-formula> and chemosensitivity <inline-formula><tex-math id=\"M4\">\\begin{document}$ S $\\end{document}</tex-math></inline-formula> are supposed to satisfy</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id=\"FE2\"> \\begin{document}$ K_{1}e^{-\\beta^{-}s}\\leq D(s) \\leq K_{2}e^{-\\beta^{+}s} \\;\\;\\;{\\rm{and}}\\;\\;\\;\\frac{D(s)}{S(s)}\\geq K_{3}s^{-\\alpha}+\\gamma, $\\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>with the constants <inline-formula><tex-math id=\"M5\">\\begin{document}$ \\beta^{-}\\geq \\beta^{+}>0 $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M6\">\\begin{document}$ K_{1},K_{2},K_{3}>0 $\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M7\">\\begin{document}$ \\alpha,\\gamma\\geq0 $\\end{document}</tex-math></inline-formula>. When <inline-formula><tex-math id=\"M8\">\\begin{document}$ h(v,w) = -v+w $\\end{document}</tex-math></inline-formula>, we study the global existence and boundedness of solutions for the above system provided that <inline-formula><tex-math id=\"M9\">\\begin{document}$ \\alpha\\in[0,\\frac{2}{n}) $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M10\">\\begin{document}$ \\beta^{-}\\geq \\beta^{+}>\\frac{n}{2} $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M11\">\\begin{document}$ \\gamma>1 $\\end{document}</tex-math></inline-formula> and the initial mass of <inline-formula><tex-math id=\"M12\">\\begin{document}$ u_{0} $\\end{document}</tex-math></inline-formula> is small enough. Moreover, it is proved that the global bounded solution <inline-formula><tex-math id=\"M13\">\\begin{document}$ (u,v,w) $\\end{document}</tex-math></inline-formula> converges to <inline-formula><tex-math id=\"M14\">\\begin{document}$ (\\overline{u_{0}},\\overline{u_{0}},\\overline{u_{0}}) $\\end{document}</tex-math></inline-formula> in the <inline-formula><tex-math id=\"M15\">\\begin{document}$ L^{\\infty} $\\end{document}</tex-math></inline-formula>-norm as <inline-formula><tex-math id=\"M16\">\\begin{document}$ t\\rightarrow \\infty $\\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id=\"M17\">\\begin{document}$ \\overline{u_{0}} = \\frac{1}{|\\Omega|}\\int_{\\Omega}u_{0}(x)dx $\\end{document}</tex-math></inline-formula>. When <inline-formula><tex-math id=\"M18\">\\begin{document}$ h(v,w) = -vw $\\end{document}</tex-math></inline-formula>, it is shown that this system possesses a unique uniformly bounded classical solution if <inline-formula><tex-math id=\"M19\">\\begin{document}$ \\alpha\\geq0 $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M20\">\\begin{document}$ \\gamma>0 $\\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id=\"M21\">\\begin{document}$ \\beta^{-}\\geq \\beta^{+}>\\frac{n}{2} $\\end{document}</tex-math></inline-formula>. Furthermore, if <inline-formula><tex-math id=\"M22\">\\begin{document}$ n = 2 $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M23\">\\begin{document}$ \\alpha\\geq0 $\\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id=\"M24\">\\begin{document}$ \\gamma\\geq0 $\\end{document}</tex-math></inline-formula>, and <inline-formula><tex-math id=\"M25\">\\begin{document}$ \\beta^{-}\\geq \\beta^{+}>\\varepsilon $\\end{document}</tex-math></inline-formula> with some <inline-formula><tex-math id=\"M26\">\\begin{document}$ \\varepsilon>0 $\\end{document}</tex-math></inline-formula>, we only obtain the global existence of solutions for the above system.</p>","PeriodicalId":435074,"journal":{"name":"Communications on Pure & Applied Analysis","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure & Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/cpaa.2022044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper deals with an exponentially decaying diffusive chemotaxis system with indirect signal production or consumption
under homogeneous Neumann boundary conditions in a smoothly bounded domain \begin{document}$ \Omega\subset \mathbb{R}^{n} $\end{document}, \begin{document}$ n\geq2 $\end{document}, where the nonlinear diffusivity \begin{document}$ D $\end{document} and chemosensitivity \begin{document}$ S $\end{document} are supposed to satisfy
with the constants \begin{document}$ \beta^{-}\geq \beta^{+}>0 $\end{document}, \begin{document}$ K_{1},K_{2},K_{3}>0 $\end{document} and \begin{document}$ \alpha,\gamma\geq0 $\end{document}. When \begin{document}$ h(v,w) = -v+w $\end{document}, we study the global existence and boundedness of solutions for the above system provided that \begin{document}$ \alpha\in[0,\frac{2}{n}) $\end{document}, \begin{document}$ \beta^{-}\geq \beta^{+}>\frac{n}{2} $\end{document}, \begin{document}$ \gamma>1 $\end{document} and the initial mass of \begin{document}$ u_{0} $\end{document} is small enough. Moreover, it is proved that the global bounded solution \begin{document}$ (u,v,w) $\end{document} converges to \begin{document}$ (\overline{u_{0}},\overline{u_{0}},\overline{u_{0}}) $\end{document} in the \begin{document}$ L^{\infty} $\end{document}-norm as \begin{document}$ t\rightarrow \infty $\end{document}, where \begin{document}$ \overline{u_{0}} = \frac{1}{|\Omega|}\int_{\Omega}u_{0}(x)dx $\end{document}. When \begin{document}$ h(v,w) = -vw $\end{document}, it is shown that this system possesses a unique uniformly bounded classical solution if \begin{document}$ \alpha\geq0 $\end{document}, \begin{document}$ \gamma>0 $\end{document} and \begin{document}$ \beta^{-}\geq \beta^{+}>\frac{n}{2} $\end{document}. Furthermore, if \begin{document}$ n = 2 $\end{document}, \begin{document}$ \alpha\geq0 $\end{document}, \begin{document}$ \gamma\geq0 $\end{document}, and \begin{document}$ \beta^{-}\geq \beta^{+}>\varepsilon $\end{document} with some \begin{document}$ \varepsilon>0 $\end{document}, we only obtain the global existence of solutions for the above system.
This paper deals with an exponentially decaying diffusive chemotaxis system with indirect signal production or consumption \begin{document}$ \begin{eqnarray*} \label{1a} \left\{ \begin{split}{} &u_t = \nabla\cdot(D(u)\nabla u)-\nabla\cdot(S(u)\nabla v), &(x,t)\in \Omega\times (0,\infty), \\ &v_t = \Delta v+h(v,w), &(x,t)\in \Omega\times (0,\infty), \\ &w_t = \Delta w- w+u, &(x,t)\in \Omega\times (0,\infty), \end{split} \right. \end{eqnarray*} $\end{document} under homogeneous Neumann boundary conditions in a smoothly bounded domain \begin{document}$ \Omega\subset \mathbb{R}^{n} $\end{document}, \begin{document}$ n\geq2 $\end{document}, where the nonlinear diffusivity \begin{document}$ D $\end{document} and chemosensitivity \begin{document}$ S $\end{document} are supposed to satisfy \begin{document}$ K_{1}e^{-\beta^{-}s}\leq D(s) \leq K_{2}e^{-\beta^{+}s} \;\;\;{\rm{and}}\;\;\;\frac{D(s)}{S(s)}\geq K_{3}s^{-\alpha}+\gamma, $\end{document} with the constants \begin{document}$ \beta^{-}\geq \beta^{+}>0 $\end{document}, \begin{document}$ K_{1},K_{2},K_{3}>0 $\end{document} and \begin{document}$ \alpha,\gamma\geq0 $\end{document}. When \begin{document}$ h(v,w) = -v+w $\end{document}, we study the global existence and boundedness of solutions for the above system provided that \begin{document}$ \alpha\in[0,\frac{2}{n}) $\end{document}, \begin{document}$ \beta^{-}\geq \beta^{+}>\frac{n}{2} $\end{document}, \begin{document}$ \gamma>1 $\end{document} and the initial mass of \begin{document}$ u_{0} $\end{document} is small enough. Moreover, it is proved that the global bounded solution \begin{document}$ (u,v,w) $\end{document} converges to \begin{document}$ (\overline{u_{0}},\overline{u_{0}},\overline{u_{0}}) $\end{document} in the \begin{document}$ L^{\infty} $\end{document}-norm as \begin{document}$ t\rightarrow \infty $\end{document}, where \begin{document}$ \overline{u_{0}} = \frac{1}{|\Omega|}\int_{\Omega}u_{0}(x)dx $\end{document}. When \begin{document}$ h(v,w) = -vw $\end{document}, it is shown that this system possesses a unique uniformly bounded classical solution if \begin{document}$ \alpha\geq0 $\end{document}, \begin{document}$ \gamma>0 $\end{document} and \begin{document}$ \beta^{-}\geq \beta^{+}>\frac{n}{2} $\end{document}. Furthermore, if \begin{document}$ n = 2 $\end{document}, \begin{document}$ \alpha\geq0 $\end{document}, \begin{document}$ \gamma\geq0 $\end{document}, and \begin{document}$ \beta^{-}\geq \beta^{+}>\varepsilon $\end{document} with some \begin{document}$ \varepsilon>0 $\end{document}, we only obtain the global existence of solutions for the above system.