{"title":"Automated di/dt stressmark generation for microprocessor power delivery networks","authors":"Youngtaek Kim, L. John","doi":"10.1109/ISLPED.2011.5993645","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a method for automated di/dt stressmark generation to test maximum voltage droop in a microprocessor power delivery network. The di/dt stressmark is an instruction sequence which draws periodic high and low current pulses that maximize voltage fluctuations including voltage droops. In order to automate di/dt stressmark generation, we devise a code generator with the ability to control instruction sequencing, register assignments, and dependencies. Our framework uses a Genetic Algorithm in scheduling and optimizing candidate instruction sequences to create a maximum voltage droop. The results show that our automatically generated di/dt stressmarks achieved more than 40% average increase in voltage droop compared to hand-coded di/dt stressmarks and typical benchmarks in experiments covering three microprocessor architectures and five power delivery network (PDN) models. Additionally, our method considers all the units in a microprocessor, as opposed to a previous ILP scheduling method that handles only execution units.","PeriodicalId":117694,"journal":{"name":"IEEE/ACM International Symposium on Low Power Electronics and Design","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISLPED.2011.5993645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30
Abstract
In this paper, we propose a method for automated di/dt stressmark generation to test maximum voltage droop in a microprocessor power delivery network. The di/dt stressmark is an instruction sequence which draws periodic high and low current pulses that maximize voltage fluctuations including voltage droops. In order to automate di/dt stressmark generation, we devise a code generator with the ability to control instruction sequencing, register assignments, and dependencies. Our framework uses a Genetic Algorithm in scheduling and optimizing candidate instruction sequences to create a maximum voltage droop. The results show that our automatically generated di/dt stressmarks achieved more than 40% average increase in voltage droop compared to hand-coded di/dt stressmarks and typical benchmarks in experiments covering three microprocessor architectures and five power delivery network (PDN) models. Additionally, our method considers all the units in a microprocessor, as opposed to a previous ILP scheduling method that handles only execution units.