Simultaneous Denoising and Edge Estimation from SEM Images using Deep Convolutional Neural Networks

N. Chaudhary, S. Savari
{"title":"Simultaneous Denoising and Edge Estimation from SEM Images using Deep Convolutional Neural Networks","authors":"N. Chaudhary, S. Savari","doi":"10.1109/ASMC.2019.8791764","DOIUrl":null,"url":null,"abstract":"We propose deep convolutional neural networks LineNet1 and LineNet2 for simultaneous denoising and edge image prediction from low-dose scanning electron microscope images. Edge estimation of nanostructures from SEM images is needed for line edge roughness (LER) and line width roughness (LWR) estimation. Our method uses supervised learning datasets of single-line SEM images and multiple-line SEM images together with edge positions information for the training of LineNet1 and LineNet2. We simulate single-line and multiple-line SEM images with Poisson noise and other artifacts using the ARTIMAGEN library developed by the National Institute of Standards and Technology. The line edges were generated using the Thorsos method and the Palasantzas spectral model. The convolutional neural networks LineNet1 and LineNet2 each contain 17 con- volutional layers, 16 batch-normalization layers and 16 dropout layers. Our results show that this approach (1) facilitates edge estimation in multiple-line images and (2) significantly reduces the memory needed for edge estimation in single-line images with a slight impact on accuracy.","PeriodicalId":287541,"journal":{"name":"2019 30th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 30th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASMC.2019.8791764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We propose deep convolutional neural networks LineNet1 and LineNet2 for simultaneous denoising and edge image prediction from low-dose scanning electron microscope images. Edge estimation of nanostructures from SEM images is needed for line edge roughness (LER) and line width roughness (LWR) estimation. Our method uses supervised learning datasets of single-line SEM images and multiple-line SEM images together with edge positions information for the training of LineNet1 and LineNet2. We simulate single-line and multiple-line SEM images with Poisson noise and other artifacts using the ARTIMAGEN library developed by the National Institute of Standards and Technology. The line edges were generated using the Thorsos method and the Palasantzas spectral model. The convolutional neural networks LineNet1 and LineNet2 each contain 17 con- volutional layers, 16 batch-normalization layers and 16 dropout layers. Our results show that this approach (1) facilitates edge estimation in multiple-line images and (2) significantly reduces the memory needed for edge estimation in single-line images with a slight impact on accuracy.
基于深度卷积神经网络的扫描电镜图像去噪与边缘估计
我们提出了深度卷积神经网络LineNet1和LineNet2,用于同时对低剂量扫描电镜图像进行去噪和边缘图像预测。线边缘粗糙度(line Edge roughness, LER)和线宽度粗糙度(line width roughness, LWR)的估计需要对扫描电镜图像中的纳米结构进行边缘估计。我们的方法使用单线SEM图像和多线SEM图像的监督学习数据集以及边缘位置信息来训练LineNet1和LineNet2。我们使用美国国家标准与技术研究所开发的ARTIMAGEN库模拟带有泊松噪声和其他伪影的单线和多线SEM图像。使用Thorsos方法和Palasantzas光谱模型生成线边缘。卷积神经网络LineNet1和LineNet2分别包含17个卷积层、16个批量归一化层和16个dropout层。我们的研究结果表明,这种方法(1)有利于多线图像的边缘估计,(2)显著减少了单线图像边缘估计所需的内存,对精度有轻微影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信