Experiments on Learning Unit-Action Models from Replay Data from RTS Games

Santiago Ontañón
{"title":"Experiments on Learning Unit-Action Models from Replay Data from RTS Games","authors":"Santiago Ontañón","doi":"10.1609/aiide.v12i2.12888","DOIUrl":null,"url":null,"abstract":"\n \n Recent work has shown that incorporating action probability models (models that given a game state can predict the probability with which an expert will play each move) into MCTS can lead to significant performance improvements in a variety of adversarial games, including RTS games. This paper presents a collection of experiments aimed at understanding the relation between the amount of training data, the predictive performance of the action models, the effect of these models in the branching factor of the game and the resulting performance gains in MCTS. Experiments are carried out in the context of the microRTS simulator, showing that more accurate predictive models do not necessarily result in better MCTS performance.\n \n","PeriodicalId":249108,"journal":{"name":"Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment","volume":"175 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aiide.v12i2.12888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Recent work has shown that incorporating action probability models (models that given a game state can predict the probability with which an expert will play each move) into MCTS can lead to significant performance improvements in a variety of adversarial games, including RTS games. This paper presents a collection of experiments aimed at understanding the relation between the amount of training data, the predictive performance of the action models, the effect of these models in the branching factor of the game and the resulting performance gains in MCTS. Experiments are carried out in the context of the microRTS simulator, showing that more accurate predictive models do not necessarily result in better MCTS performance.
基于RTS游戏重玩数据的单位动作模型学习实验
最近的研究表明,将动作概率模型(游戏邦注:给出游戏状态的模型可以预测专家采取每一步行动的概率)整合到MCTS中,可以显著提高各种对抗游戏(包括RTS游戏)的性能。本文提出了一系列实验,旨在了解训练数据量、动作模型的预测性能、这些模型在游戏分支因素中的影响与MCTS中由此产生的性能增益之间的关系。在micrororts模拟器环境下进行的实验表明,更准确的预测模型并不一定会导致更好的MCTS性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信