An immune-based model for Web data mining

Wang Feng, Xuwei Li, Zhu Hong
{"title":"An immune-based model for Web data mining","authors":"Wang Feng, Xuwei Li, Zhu Hong","doi":"10.1109/ISADS.2005.1452133","DOIUrl":null,"url":null,"abstract":"This paper presents an immune-based model for Web data mining, in which the rule library and statistic dictionary are used to build search schemas, and data from different sources are wrapped to XML. By using Web content mining and Web structure mining, data are abstracted to mediated schemas and then compared with search schemas. As the information about Web page content and its links are optimized, the traditional search strategy based on keyword matching can be improved. At the same time, many ideas of immune system are introduced to increase the search efficiency. Now many Web data mining system using immune approaches by Andrew Seeker, Alex A. Freitas, and Jon Timmis, (2003), H.A. Abbass, R.A. Sarker, and C.S. Newton (2001) are concerned with data clustering, while immunity is mainly used for data processing after clustering in this model.","PeriodicalId":120577,"journal":{"name":"Proceedings Autonomous Decentralized Systems, 2005. ISADS 2005.","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Autonomous Decentralized Systems, 2005. ISADS 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISADS.2005.1452133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper presents an immune-based model for Web data mining, in which the rule library and statistic dictionary are used to build search schemas, and data from different sources are wrapped to XML. By using Web content mining and Web structure mining, data are abstracted to mediated schemas and then compared with search schemas. As the information about Web page content and its links are optimized, the traditional search strategy based on keyword matching can be improved. At the same time, many ideas of immune system are introduced to increase the search efficiency. Now many Web data mining system using immune approaches by Andrew Seeker, Alex A. Freitas, and Jon Timmis, (2003), H.A. Abbass, R.A. Sarker, and C.S. Newton (2001) are concerned with data clustering, while immunity is mainly used for data processing after clustering in this model.
基于免疫的Web数据挖掘模型
本文提出了一种基于免疫的Web数据挖掘模型,该模型利用规则库和统计字典构建搜索模式,并将不同来源的数据包装成XML。通过Web内容挖掘和Web结构挖掘,将数据抽象为中介模式,然后与搜索模式进行比较。随着网页内容及其链接信息的优化,传统的基于关键词匹配的搜索策略得到了改进。同时,为了提高搜索效率,引入了许多免疫系统的思想。目前,Andrew Seeker、Alex A. Freitas和Jon Timmis(2003)、H.A. Abbass、R.A. Sarker和C.S. Newton(2001)等使用免疫方法的Web数据挖掘系统主要关注数据聚类,而免疫主要用于该模型中聚类后的数据处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信