The Design of Predictive Model for the Academic Performance of Students at University Based on Machine Learning

Barnabas Ndlovu Gatsheni, Olga Ngala Katambwa
{"title":"The Design of Predictive Model for the Academic Performance of Students at University Based on Machine Learning","authors":"Barnabas Ndlovu Gatsheni, Olga Ngala Katambwa","doi":"10.17265/2328-2223/2018.04.006","DOIUrl":null,"url":null,"abstract":"Students in South African Universities come from different socio-cultural backgrounds, countries and high schools. This suggests that these students have different experiences which impacts on their levels of grasping information in class as they potentially use different lenses on tuition. The current practice in Universities in contributing to the academic performance of students include the use of tutors, the use of mobile devices for first year students, use of student assistants and the use of different feedback measures. What is problematic about the current practice is that students are quitting university in high numbers. In this study, knowledge has been drawn from data through the use of machine learning algorithms. Bayesian networks, support vector machines (SVM) and decision trees algorithms were used individually in this work to construct predictive models for the academic performance of students. The best model was constructed using SVM and it gave a prediction of 72.87% and a prediction cost of 139. The model does predict the performance of students in advance of the year-end examinations outcome. The results suggest that South African Universities must recognize the diversity in student population and thus provide students with better support and equip them with the necessary knowledge that will enable them to tap into their full potential and thus enhance their skills.","PeriodicalId":382952,"journal":{"name":"J. of Electrical Engineering","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. of Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17265/2328-2223/2018.04.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Students in South African Universities come from different socio-cultural backgrounds, countries and high schools. This suggests that these students have different experiences which impacts on their levels of grasping information in class as they potentially use different lenses on tuition. The current practice in Universities in contributing to the academic performance of students include the use of tutors, the use of mobile devices for first year students, use of student assistants and the use of different feedback measures. What is problematic about the current practice is that students are quitting university in high numbers. In this study, knowledge has been drawn from data through the use of machine learning algorithms. Bayesian networks, support vector machines (SVM) and decision trees algorithms were used individually in this work to construct predictive models for the academic performance of students. The best model was constructed using SVM and it gave a prediction of 72.87% and a prediction cost of 139. The model does predict the performance of students in advance of the year-end examinations outcome. The results suggest that South African Universities must recognize the diversity in student population and thus provide students with better support and equip them with the necessary knowledge that will enable them to tap into their full potential and thus enhance their skills.
基于机器学习的大学生学业成绩预测模型设计
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信