Recapitulization of tweets using graph-based clustering

Vivian Brian Lobo, N. Ansari
{"title":"Recapitulization of tweets using graph-based clustering","authors":"Vivian Brian Lobo, N. Ansari","doi":"10.1109/cscita.2017.8066532","DOIUrl":null,"url":null,"abstract":"Twitter, a well-liked online social networking site, facilitates millions of users on a daily basis to dispatch and orate quick 140-character notes named tweets. Nowadays, Twitter is cogitated as the fastest and popular intermediate of communication and is used to follow latest events. Tweets pertaining to a specific event can be effortlessly found using keyword matching, but there are numerous tweets that are likely to contain information that is semantically identical. Moreover, there exist many systems for recapitulating tweets related to a particular event, but they have numerous limitations and are unable to provide accurate results. This work aims to overcome the limitations of existing systems by developing a system for recapitulating tweets using graph-based clustering.","PeriodicalId":299147,"journal":{"name":"2017 2nd International Conference on Communication Systems, Computing and IT Applications (CSCITA)","volume":"137 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 2nd International Conference on Communication Systems, Computing and IT Applications (CSCITA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cscita.2017.8066532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Twitter, a well-liked online social networking site, facilitates millions of users on a daily basis to dispatch and orate quick 140-character notes named tweets. Nowadays, Twitter is cogitated as the fastest and popular intermediate of communication and is used to follow latest events. Tweets pertaining to a specific event can be effortlessly found using keyword matching, but there are numerous tweets that are likely to contain information that is semantically identical. Moreover, there exist many systems for recapitulating tweets related to a particular event, but they have numerous limitations and are unable to provide accurate results. This work aims to overcome the limitations of existing systems by developing a system for recapitulating tweets using graph-based clustering.
使用基于图的聚类对tweet进行重述
Twitter是一个广受欢迎的在线社交网站,每天有数百万用户可以快速发送和发送140个字符的tweet。如今,Twitter被认为是最快、最受欢迎的交流媒介,被用来关注最新的事件。使用关键字匹配可以毫不费力地找到与特定事件相关的tweet,但是有许多tweet可能包含语义相同的信息。此外,有许多系统可以概括与特定事件相关的tweet,但它们有许多限制,无法提供准确的结果。这项工作旨在克服现有系统的局限性,通过开发一个使用基于图的聚类来概括推文的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信