Metric velocity and landmark distance estimation utilizing monocular camera images and IMU data

M. Tkocz, K. Janschek
{"title":"Metric velocity and landmark distance estimation utilizing monocular camera images and IMU data","authors":"M. Tkocz, K. Janschek","doi":"10.1109/WPNC.2014.6843308","DOIUrl":null,"url":null,"abstract":"In this paper we present a novel approach for the estimation of metric velocities and metric distances to landmarks utilizing monocular images and inertial measurements only. The proposed algorithm is based on an Extended Kalman Filter and is closely related to the well known Simultaneous Localization and Mapping (SLAM). In contrast to standard SLAM formulations the state of an agent is expressed in the body frame instead of the inertial frame. This formulation results in direct observability of the velocity and landmark distances for dynamic trajectories and the ability to maintain a consistent estimate for non-dynamic trajectories.","PeriodicalId":106193,"journal":{"name":"2014 11th Workshop on Positioning, Navigation and Communication (WPNC)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th Workshop on Positioning, Navigation and Communication (WPNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WPNC.2014.6843308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper we present a novel approach for the estimation of metric velocities and metric distances to landmarks utilizing monocular images and inertial measurements only. The proposed algorithm is based on an Extended Kalman Filter and is closely related to the well known Simultaneous Localization and Mapping (SLAM). In contrast to standard SLAM formulations the state of an agent is expressed in the body frame instead of the inertial frame. This formulation results in direct observability of the velocity and landmark distances for dynamic trajectories and the ability to maintain a consistent estimate for non-dynamic trajectories.
利用单目相机图像和IMU数据估算公制速度和地标距离
在本文中,我们提出了一种新的方法来估计公制速度和公制距离的地标利用单目图像和惯性测量。该算法基于扩展卡尔曼滤波,与著名的同时定位和映射(SLAM)密切相关。与标准SLAM公式相反,agent的状态在身体框架中而不是在惯性框架中表示。这种公式可以直接观察到动态轨迹的速度和地标距离,并能够保持对非动态轨迹的一致估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信