MPSKT: Multi-head ProbSparse Self-Attention for Knowledge Tracing

Lingmei Ai, Xiaoying Zhang, Ximing Hu
{"title":"MPSKT: Multi-head ProbSparse Self-Attention for Knowledge Tracing","authors":"Lingmei Ai, Xiaoying Zhang, Ximing Hu","doi":"10.1145/3565387.3565420","DOIUrl":null,"url":null,"abstract":"Over the past two years, COVID-19 has led to a widespread rise in online education, and knowledge tracing has been used on various educational platforms. However, most existing knowledge tracing models still suffer from long-term dependence. To address this problem, we propose a Multi-head ProbSparse Self-Attention for Knowledge Tracing(MPSKT). Firstly, the temporal convolutional network is used to encode the position information of the input sequence. Then, the Multi-head ProbSparse Self-Attention in the encoder and decoder blocks is used to capture the relationship between the input sequences, and the convolution and pooling layers in the encoder block are used to shorten the length of the input sequence, which greatly reduces the time complexity of the model and better solves the problem of long-term dependence of the model. Finally, experimental results on three public online education datasets demonstrate the effectiveness of our proposed model.","PeriodicalId":182491,"journal":{"name":"Proceedings of the 6th International Conference on Computer Science and Application Engineering","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Computer Science and Application Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3565387.3565420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Over the past two years, COVID-19 has led to a widespread rise in online education, and knowledge tracing has been used on various educational platforms. However, most existing knowledge tracing models still suffer from long-term dependence. To address this problem, we propose a Multi-head ProbSparse Self-Attention for Knowledge Tracing(MPSKT). Firstly, the temporal convolutional network is used to encode the position information of the input sequence. Then, the Multi-head ProbSparse Self-Attention in the encoder and decoder blocks is used to capture the relationship between the input sequences, and the convolution and pooling layers in the encoder block are used to shorten the length of the input sequence, which greatly reduces the time complexity of the model and better solves the problem of long-term dependence of the model. Finally, experimental results on three public online education datasets demonstrate the effectiveness of our proposed model.
MPSKT:多头ProbSparse Self-Attention for Knowledge Tracing
近两年来,新冠肺炎疫情推动了网络教育的广泛兴起,各种教育平台都在使用知识溯源。然而,大多数现有的知识追踪模型仍然存在长期依赖的问题。为了解决这个问题,我们提出了一种多头ProbSparse Self-Attention for Knowledge Tracing(MPSKT)算法。首先,利用时序卷积网络对输入序列的位置信息进行编码;然后,利用编码器和解码器块中的多头ProbSparse Self-Attention捕获输入序列之间的关系,并利用编码器块中的卷积层和池化层缩短输入序列的长度,大大降低了模型的时间复杂度,较好地解决了模型的长期依赖问题。最后,在三个公共在线教育数据集上的实验结果验证了该模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信