Load prediction using hybrid model for computational grid

Yongwei Wu, Yulai Yuan, Guangwen Yang, Weimin Zheng
{"title":"Load prediction using hybrid model for computational grid","authors":"Yongwei Wu, Yulai Yuan, Guangwen Yang, Weimin Zheng","doi":"10.1109/GRID.2007.4354138","DOIUrl":null,"url":null,"abstract":"Due to the dynamic nature of grid environments, schedule algorithms always need assistance of a long-time-ahead load prediction to make decisions on how to use grid resources efficiently. In this paper, we present and evaluate a new hybrid model, which predicts the n-step-ahead load status by using interval values. This model integrates autoregressive (AR) model with confidence interval estimations to forecast the future load of a system. Meanwhile, two filtering technologies from signal processing field are also introduced into this model to eliminate data noise and enhance prediction accuracy. The results of experiments conducted on a real grid environment demonstrate that this new model is more capable of predicting n-step-ahead load in a computational grid than previous works. The proposed hybrid model performs well on prediction advance time for up to 50 minutes, with significant less prediction errors than conventional AR model. It also achieves an interval length acceptable for task scheduler.","PeriodicalId":304508,"journal":{"name":"2007 8th IEEE/ACM International Conference on Grid Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 8th IEEE/ACM International Conference on Grid Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GRID.2007.4354138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55

Abstract

Due to the dynamic nature of grid environments, schedule algorithms always need assistance of a long-time-ahead load prediction to make decisions on how to use grid resources efficiently. In this paper, we present and evaluate a new hybrid model, which predicts the n-step-ahead load status by using interval values. This model integrates autoregressive (AR) model with confidence interval estimations to forecast the future load of a system. Meanwhile, two filtering technologies from signal processing field are also introduced into this model to eliminate data noise and enhance prediction accuracy. The results of experiments conducted on a real grid environment demonstrate that this new model is more capable of predicting n-step-ahead load in a computational grid than previous works. The proposed hybrid model performs well on prediction advance time for up to 50 minutes, with significant less prediction errors than conventional AR model. It also achieves an interval length acceptable for task scheduler.
基于混合模型的计算网格负荷预测
由于网格环境的动态性,调度算法总是需要借助长时间的负荷预测来决定如何有效地利用网格资源。本文提出并评价了一种利用区间值预测超前n步负荷状态的混合模型。该模型将自回归(AR)模型与置信区间估计相结合,用于预测系统的未来负荷。同时,该模型还引入了信号处理领域的两种滤波技术,以消除数据噪声,提高预测精度。在实际网格环境中进行的实验结果表明,该模型比以往的方法更能预测计算网格中的n步前负荷。该混合模型的预测提前时间长达50分钟,预测误差明显小于传统AR模型。它还实现了任务调度器可接受的间隔长度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信