Real-Time Traffic Analysis using Deep Learning Techniques and UAV based Video

Huaizhong Zhang, Mark Liptrott, Nikolaos Bessis, Jianquan Cheng
{"title":"Real-Time Traffic Analysis using Deep Learning Techniques and UAV based Video","authors":"Huaizhong Zhang, Mark Liptrott, Nikolaos Bessis, Jianquan Cheng","doi":"10.1109/AVSS.2019.8909879","DOIUrl":null,"url":null,"abstract":"In urban environments there are daily issues of traffic congestion which city authorities need to address. Realtime analysis of traffic flow information is crucial for efficiently managing urban traffic. This paper aims to conduct traffic analysis using UAV-based videos and deep learning techniques. The road traffic video is collected by using a position-fixed UAV. The most recent deep learning methods are applied to identify the moving objects in videos. The relevant mobility metrics are calculated to conduct traffic analysis and measure the consequences of traffic congestion. The proposed approach is validated with the manual analysis results and the visualization results. The traffic analysis process is real-time in terms of the pre-trained model used.","PeriodicalId":243194,"journal":{"name":"2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2019.8909879","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

In urban environments there are daily issues of traffic congestion which city authorities need to address. Realtime analysis of traffic flow information is crucial for efficiently managing urban traffic. This paper aims to conduct traffic analysis using UAV-based videos and deep learning techniques. The road traffic video is collected by using a position-fixed UAV. The most recent deep learning methods are applied to identify the moving objects in videos. The relevant mobility metrics are calculated to conduct traffic analysis and measure the consequences of traffic congestion. The proposed approach is validated with the manual analysis results and the visualization results. The traffic analysis process is real-time in terms of the pre-trained model used.
基于深度学习技术和无人机视频的实时交通分析
在城市环境中,每天都有城市当局需要解决的交通拥堵问题。交通流信息的实时分析对于有效管理城市交通至关重要。本文旨在使用基于无人机的视频和深度学习技术进行流量分析。道路交通视频由定位无人机采集。最新的深度学习方法被应用于识别视频中的移动物体。计算相关的流动性指标,以进行交通分析和衡量交通拥堵的后果。人工分析结果和可视化结果验证了该方法的有效性。根据所使用的预训练模型,流量分析过程是实时的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信