Decentralized control with neural network of cooperative robot manipulator for object balancing task on flat plate

Nattapon Jaisumroum, P. Chotiprayanakul, S. Limnararat
{"title":"Decentralized control with neural network of cooperative robot manipulator for object balancing task on flat plate","authors":"Nattapon Jaisumroum, P. Chotiprayanakul, S. Limnararat","doi":"10.23919/ICCAS.2017.8204339","DOIUrl":null,"url":null,"abstract":"In this paper, a decentralized framework for kinematic control of cooperative manipulators systems is developed. The motion of the robot system is specified at the object position, by adopting a task-oriented formulation for cooperative tasks. In the controller of robot computes, the end-effector motion of robots in a decentralized on the camera position frame of the knowledge of the assigned cooperative task. The motion of manipulator is reference computed by object and its neighbors. The joint motion of robots is reference corresponding from the end-effector. This study approach decentralized control of collaborative manipulators, tested in the simulation on MATLAB® software composed by neural network method. A neural network is used to approximate a decentralized control law designed by the back-propagation technique. The motion for each joint is controlled independently using local angular position and velocity measurements. Finally, the experiment shows the feasibility of the proposed control scheme using a robotics.","PeriodicalId":140598,"journal":{"name":"2017 17th International Conference on Control, Automation and Systems (ICCAS)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 17th International Conference on Control, Automation and Systems (ICCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICCAS.2017.8204339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, a decentralized framework for kinematic control of cooperative manipulators systems is developed. The motion of the robot system is specified at the object position, by adopting a task-oriented formulation for cooperative tasks. In the controller of robot computes, the end-effector motion of robots in a decentralized on the camera position frame of the knowledge of the assigned cooperative task. The motion of manipulator is reference computed by object and its neighbors. The joint motion of robots is reference corresponding from the end-effector. This study approach decentralized control of collaborative manipulators, tested in the simulation on MATLAB® software composed by neural network method. A neural network is used to approximate a decentralized control law designed by the back-propagation technique. The motion for each joint is controlled independently using local angular position and velocity measurements. Finally, the experiment shows the feasibility of the proposed control scheme using a robotics.
基于神经网络的平板物体平衡协作机器人的分散控制
本文提出了一种分散的协作机械手系统运动控制框架。机器人系统的运动在目标位置指定,采用面向任务的协作任务公式。在机器人控制器的计算中,机器人的末端执行器运动在一个分散的关于摄像机位置帧的知识中分配合作任务。机械手的运动是由对象及其邻域进行引用计算的。机器人的关节运动是末端执行器的参考对应。本文研究了协作机械手的分散控制方法,并在MATLAB®软件上采用神经网络方法进行了仿真验证。利用神经网络逼近由反向传播技术设计的分散控制律。每个关节的运动都是通过局部的角位置和速度测量来独立控制的。最后,通过机器人实验验证了所提控制方案的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信