Blow up for Porous Medium Equations

Burhan Selçuk
{"title":"Blow up for Porous Medium Equations","authors":"Burhan Selçuk","doi":"10.36753/MATHENOT.686065","DOIUrl":null,"url":null,"abstract":"In various branches of applied sciences, porous medium equations exist where this basic model occurs in a natural fashion. It has been used to model fluid flow, chemical reactions, diffusion or heat transfer, population dynamics, etc.. Nonlinear diffusion equations involving the porous medium equations have also been extensively studied. However, there has not been much research effort in the parabolic problem for porous medium equations with two nonlinear boundary sources in the literature. This paper adresses the following porous medium equations with nonlinear boundary conditions. Firstly, we obtain finite time blow up on the boundary by using the maximum principle and blow up criteria and existence criteria by using steady state of the equation $k_{t}=k_{xx}^{n},(x,t)\\in (0,L)\\times (0,T)\\ $with $ k_{x}^{n}(0,t)=k^{\\alpha }(0,t)$, $k_{x}^{n}(L,t)=k^{\\beta }(L,t)$,$\\ t\\in (0,T)\\ $and initial function $k\\left( x,0\\right) =k_{0}\\left( x\\right) $,$\\ x\\in \\lbrack 0,L]\\ $where $n>1$, $\\alpha \\ $and $\\beta \\ $and positive constants.","PeriodicalId":127589,"journal":{"name":"Mathematical Sciences and Applications E-Notes","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Sciences and Applications E-Notes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36753/MATHENOT.686065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In various branches of applied sciences, porous medium equations exist where this basic model occurs in a natural fashion. It has been used to model fluid flow, chemical reactions, diffusion or heat transfer, population dynamics, etc.. Nonlinear diffusion equations involving the porous medium equations have also been extensively studied. However, there has not been much research effort in the parabolic problem for porous medium equations with two nonlinear boundary sources in the literature. This paper adresses the following porous medium equations with nonlinear boundary conditions. Firstly, we obtain finite time blow up on the boundary by using the maximum principle and blow up criteria and existence criteria by using steady state of the equation $k_{t}=k_{xx}^{n},(x,t)\in (0,L)\times (0,T)\ $with $ k_{x}^{n}(0,t)=k^{\alpha }(0,t)$, $k_{x}^{n}(L,t)=k^{\beta }(L,t)$,$\ t\in (0,T)\ $and initial function $k\left( x,0\right) =k_{0}\left( x\right) $,$\ x\in \lbrack 0,L]\ $where $n>1$, $\alpha \ $and $\beta \ $and positive constants.
放大多孔介质方程
在应用科学的各个分支中,多孔介质方程存在于这种基本模型以自然方式出现的地方。它已被用于模拟流体流动、化学反应、扩散或传热、种群动力学等。涉及多孔介质方程的非线性扩散方程也得到了广泛的研究。然而,对于具有两个非线性边界源的多孔介质方程的抛物型问题,文献中还没有太多的研究。本文研究具有非线性边界条件的多孔介质方程。首先,利用$k_{t}=k_{xx}^{n},(x,t)\in (0,L)\times (0,T)\ $方程的稳态($ k_{x}^{n}(0,t)=k^{\alpha }(0,t)$, $k_{x}^{n}(L,t)=k^{\beta }(L,t)$, $\ t\in (0,T)\ $)和初始函数$k\left( x,0\right) =k_{0}\left( x\right) $, $\ x\in \lbrack 0,L]\ $,其中$n>1$, $\alpha \ $, $\beta \ $)和正常数,利用极大值原理和爆破判据得到边界上的有限时间爆破。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信