IR surface reflectance estimation and material type recognition using two-stream net and kinect camera

Seok-Kun Lee, Hwasup Lim, S. Ahn, Seungkyu Lee
{"title":"IR surface reflectance estimation and material type recognition using two-stream net and kinect camera","authors":"Seok-Kun Lee, Hwasup Lim, S. Ahn, Seungkyu Lee","doi":"10.1145/3306214.3338557","DOIUrl":null,"url":null,"abstract":"Recently, material type recognition using color or light field camera has been studied. However, visual pattern based approaches for material type recognition without direct acquisition of surface reflectance show limited performance. In this work, we propose IR surface reflectance estimation using off-the-shelf ToF (Time-of-Flight) active sensor such as Kinect and perform surface material type recognition based on both color and reflectance clues. Two stream deep neural network consists of convolutional neural network encoding visual clue and recurrent neural network encoding reflectance characteristic is proposed for material classification. Estimated IR surface reflectance and material type recognition evaluation on our Color-IR Material Data set show promising performance compared to prior approaches.","PeriodicalId":216038,"journal":{"name":"ACM SIGGRAPH 2019 Posters","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH 2019 Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3306214.3338557","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Recently, material type recognition using color or light field camera has been studied. However, visual pattern based approaches for material type recognition without direct acquisition of surface reflectance show limited performance. In this work, we propose IR surface reflectance estimation using off-the-shelf ToF (Time-of-Flight) active sensor such as Kinect and perform surface material type recognition based on both color and reflectance clues. Two stream deep neural network consists of convolutional neural network encoding visual clue and recurrent neural network encoding reflectance characteristic is proposed for material classification. Estimated IR surface reflectance and material type recognition evaluation on our Color-IR Material Data set show promising performance compared to prior approaches.
基于双流网络和kinect相机的红外表面反射率估计和材料类型识别
近年来,人们对彩色或光场相机识别材料类型进行了研究。然而,没有直接获取表面反射率的基于视觉模式的材料类型识别方法表现出有限的性能。在这项工作中,我们提出了使用现成的ToF(飞行时间)主动传感器(如Kinect)进行红外表面反射率估计,并基于颜色和反射率线索执行表面材料类型识别。提出了由编码视觉线索的卷积神经网络和编码反射率特征的递归神经网络组成的两流深度神经网络用于材料分类。估计的红外表面反射率和材料类型识别评估在我们的颜色-红外材料数据集显示出与之前的方法相比有希望的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信