Local Fisher discriminant analysis for supervised dimensionality reduction

Masashi Sugiyama
{"title":"Local Fisher discriminant analysis for supervised dimensionality reduction","authors":"Masashi Sugiyama","doi":"10.1145/1143844.1143958","DOIUrl":null,"url":null,"abstract":"Dimensionality reduction is one of the important preprocessing steps in high-dimensional data analysis. In this paper, we consider the supervised dimensionality reduction problem where samples are accompanied with class labels. Traditional Fisher discriminant analysis is a popular and powerful method for this purpose. However, it tends to give undesired results if samples in some class form several separate clusters, i.e., multimodal. In this paper, we propose a new dimensionality reduction method called local Fisher discriminant analysis (LFDA), which is a localized variant of Fisher discriminant analysis. LFDA takes local structure of the data into account so the multimodal data can be embedded appropriately. We also show that LFDA can be extended to non-linear dimensionality reduction scenarios by the kernel trick.","PeriodicalId":124011,"journal":{"name":"Proceedings of the 23rd international conference on Machine learning","volume":"229 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"373","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd international conference on Machine learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1143844.1143958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 373

Abstract

Dimensionality reduction is one of the important preprocessing steps in high-dimensional data analysis. In this paper, we consider the supervised dimensionality reduction problem where samples are accompanied with class labels. Traditional Fisher discriminant analysis is a popular and powerful method for this purpose. However, it tends to give undesired results if samples in some class form several separate clusters, i.e., multimodal. In this paper, we propose a new dimensionality reduction method called local Fisher discriminant analysis (LFDA), which is a localized variant of Fisher discriminant analysis. LFDA takes local structure of the data into account so the multimodal data can be embedded appropriately. We also show that LFDA can be extended to non-linear dimensionality reduction scenarios by the kernel trick.
监督降维的局部Fisher判别分析
降维是高维数据分析中重要的预处理步骤之一。在本文中,我们考虑了带有类标签的样本的监督降维问题。传统的费雪判别分析是一种流行而有力的方法。然而,如果某些类中的样本形成几个单独的簇,即多模态,则往往会给出不期望的结果。本文提出了一种新的降维方法,称为局部Fisher判别分析(LFDA),它是Fisher判别分析的局部变体。LFDA考虑了数据的局部结构,因此可以适当地嵌入多模态数据。我们还证明了LFDA可以通过核技巧扩展到非线性降维场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信