T. Nawaz, Jonathan N. Boyle, Longzhen Li, J. Ferryman
{"title":"Tracking performance evaluation on PETS 2015 Challenge datasets","authors":"T. Nawaz, Jonathan N. Boyle, Longzhen Li, J. Ferryman","doi":"10.1109/AVSS.2015.7301743","DOIUrl":null,"url":null,"abstract":"This paper presents a quantitative evaluation of a tracking system on PETS 2015 Challenge datasets using well-established performance measures. Using the existing tools, the tracking system implements an end-to-end pipeline that include object detection, tracking and post-processing stages. The evaluation results are presented on the provided sequences of both ARENA and P5 datasets of PETS 2015 Challenge. The results show an encouraging performance of the tracker in terms of accuracy but a greater tendency of being prone to cardinality error and ID changes on both datasets. Moreover, the analysis show a better performance of the tracker on visible imagery than on thermal imagery.","PeriodicalId":101864,"journal":{"name":"2015 12th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 12th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS.2015.7301743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
This paper presents a quantitative evaluation of a tracking system on PETS 2015 Challenge datasets using well-established performance measures. Using the existing tools, the tracking system implements an end-to-end pipeline that include object detection, tracking and post-processing stages. The evaluation results are presented on the provided sequences of both ARENA and P5 datasets of PETS 2015 Challenge. The results show an encouraging performance of the tracker in terms of accuracy but a greater tendency of being prone to cardinality error and ID changes on both datasets. Moreover, the analysis show a better performance of the tracker on visible imagery than on thermal imagery.