Most Claimed Statistical Findings in Cross-Sectional Return Predictability Are Likely True

Andrew Y. Chen
{"title":"Most Claimed Statistical Findings in Cross-Sectional Return Predictability Are Likely True","authors":"Andrew Y. Chen","doi":"10.2139/ssrn.3912915","DOIUrl":null,"url":null,"abstract":"Harvey, Liu, and Zhu (2016) “argue that most claimed research findings in financial economics are likely false.” Surprisingly, their false discovery rate (FDR) estimates suggest most are true. I revisit their results by developing non- and semi-parametric FDR estimators that account for publication bias and empirical correlations. These estimators provide simple closed-form expressions and reliably produce an upper bound on the FDR in simulations that cluster-bootstrap from empirical predictor returns. Applying these estimators to the Chen-Zimmermann dataset of 205 predictors, I find that most claimed statistical findings in the cross-sectional predictability literature are likely true.","PeriodicalId":139983,"journal":{"name":"Econometrics: Econometric & Statistical Methods - Special Topics eJournal","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics: Econometric & Statistical Methods - Special Topics eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3912915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Harvey, Liu, and Zhu (2016) “argue that most claimed research findings in financial economics are likely false.” Surprisingly, their false discovery rate (FDR) estimates suggest most are true. I revisit their results by developing non- and semi-parametric FDR estimators that account for publication bias and empirical correlations. These estimators provide simple closed-form expressions and reliably produce an upper bound on the FDR in simulations that cluster-bootstrap from empirical predictor returns. Applying these estimators to the Chen-Zimmermann dataset of 205 predictors, I find that most claimed statistical findings in the cross-sectional predictability literature are likely true.
在横断面收益可预测性中,大多数声称的统计结果可能是正确的
Harvey、Liu和Zhu(2016)“认为金融经济学中大多数声称的研究结果可能是错误的。”令人惊讶的是,他们的错误发现率(FDR)估计显示,大多数都是正确的。我通过开发非参数和半参数的FDR估计器来重新审视他们的结果,这些估计器考虑了出版偏差和经验相关性。这些估计器提供了简单的封闭形式表达式,并在从经验预测器返回的聚类自举模拟中可靠地产生了FDR的上界。将这些估计值应用于Chen-Zimmermann的205个预测因子的数据集,我发现在横断面可预测性文献中声称的大多数统计结果可能是正确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信