An Evolution-based Machine Learning Approach for Inducing Glucose Prediction Models

I. D. Falco, Antonio Della Cioppa, T. Koutny, U. Scafuri, E. Tarantino, Martin Ubl
{"title":"An Evolution-based Machine Learning Approach for Inducing Glucose Prediction Models","authors":"I. D. Falco, Antonio Della Cioppa, T. Koutny, U. Scafuri, E. Tarantino, Martin Ubl","doi":"10.1109/ISCC55528.2022.9912918","DOIUrl":null,"url":null,"abstract":"Within this paper a Grammatical Evolution al-gorithm is exploited to induce personalized and interpretable glucose forecasting models for diabetic patients based on the historical measurements of the glucose, the carbohydrates, and the injected insulin. A real-world data set of Type 1 diabetic patients is used to assess the induced models. The experimental trials show that the performance of extracted models is compara-ble with that obtained by other state-of-the-art techniques that require a more significant computational effort.","PeriodicalId":309606,"journal":{"name":"2022 IEEE Symposium on Computers and Communications (ISCC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC55528.2022.9912918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Within this paper a Grammatical Evolution al-gorithm is exploited to induce personalized and interpretable glucose forecasting models for diabetic patients based on the historical measurements of the glucose, the carbohydrates, and the injected insulin. A real-world data set of Type 1 diabetic patients is used to assess the induced models. The experimental trials show that the performance of extracted models is compara-ble with that obtained by other state-of-the-art techniques that require a more significant computational effort.
基于进化的机器学习方法诱导葡萄糖预测模型
本文利用语法进化算法,基于糖尿病患者的血糖、碳水化合物和注射胰岛素的历史测量,诱导个性化和可解释的血糖预测模型。使用1型糖尿病患者的真实数据集来评估诱导模型。实验表明,所提取的模型的性能与其他需要更大计算量的最先进技术所获得的模型相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信