Intelligent myoelectric control of a humeral ampulation

Hachemi Cherrih, M. Kedir-Talha, A. Amirat, A. Hariz, W. Hanniche
{"title":"Intelligent myoelectric control of a humeral ampulation","authors":"Hachemi Cherrih, M. Kedir-Talha, A. Amirat, A. Hariz, W. Hanniche","doi":"10.1109/IHSH51661.2021.9378718","DOIUrl":null,"url":null,"abstract":"This paper presents the development of an intelligent system capable of managing the mobility of a myoelectric prosthesis for above elbow amputees. A choice of an acquisition protocol allowed us to produce two EMG signal databanks for two types of movement extension and flexion. Furthermore, the databanks were used to carry out the training of the intelligent system. With only two temporal characteristics, the SVM classifier test produced an accuracy of 84.75%. The performance of the latter has been validated using cross-validation. These results are promising in terms of real-time implementation of an intelligent embedded system of a myoelectric elbow prosthesis.","PeriodicalId":127735,"journal":{"name":"2020 2nd International Workshop on Human-Centric Smart Environments for Health and Well-being (IHSH)","volume":"255 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd International Workshop on Human-Centric Smart Environments for Health and Well-being (IHSH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IHSH51661.2021.9378718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents the development of an intelligent system capable of managing the mobility of a myoelectric prosthesis for above elbow amputees. A choice of an acquisition protocol allowed us to produce two EMG signal databanks for two types of movement extension and flexion. Furthermore, the databanks were used to carry out the training of the intelligent system. With only two temporal characteristics, the SVM classifier test produced an accuracy of 84.75%. The performance of the latter has been validated using cross-validation. These results are promising in terms of real-time implementation of an intelligent embedded system of a myoelectric elbow prosthesis.
肱骨运动的智能肌电控制
本文介绍了一种智能系统的开发,该系统能够管理肘部以上截肢者的肌电假肢的移动性。一种采集协议的选择使我们能够为两种类型的运动伸展和屈曲产生两个肌电信号数据库。此外,利用数据库对智能系统进行训练。在只有两个时间特征的情况下,SVM分类器测试的准确率为84.75%。后者的性能已通过交叉验证进行了验证。这些结果在肌电肘关节假体智能嵌入式系统的实时实现方面是有希望的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信