Stochastic Version of EM Algorithm for Nonlinear Random ChangePoint Models

Hongbin Zhang, Binod Manandhar
{"title":"Stochastic Version of EM Algorithm for Nonlinear Random ChangePoint Models","authors":"Hongbin Zhang, Binod Manandhar","doi":"10.11159/icsta21.119","DOIUrl":null,"url":null,"abstract":"Random effect change-point models are commonly used to infer individual-specific time of event that induces trend change of longitudinal data. Linear models are often employed before and after the change point. However, in applications such as HIV studies, a mechanistic nonlinear model can be derived for the process based on the underlying data-generation mechanisms and such nonlinear model may provide better ``predictions\". In this article, we propose a random change-point model in which we model the longitudinal data by segmented nonlinear mixed effect models. Inference wise, we propose a maximum likelihood solution where we use the Stochastic Expectation-Maximization (StEM) algorithm coupled with independent multivariate rejection sampling through Gibbs’s sampler. We evaluate the method with simulations to gain insights.","PeriodicalId":403959,"journal":{"name":"Proceedings of the 3rd International Conference on Statistics: Theory and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Statistics: Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11159/icsta21.119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Random effect change-point models are commonly used to infer individual-specific time of event that induces trend change of longitudinal data. Linear models are often employed before and after the change point. However, in applications such as HIV studies, a mechanistic nonlinear model can be derived for the process based on the underlying data-generation mechanisms and such nonlinear model may provide better ``predictions". In this article, we propose a random change-point model in which we model the longitudinal data by segmented nonlinear mixed effect models. Inference wise, we propose a maximum likelihood solution where we use the Stochastic Expectation-Maximization (StEM) algorithm coupled with independent multivariate rejection sampling through Gibbs’s sampler. We evaluate the method with simulations to gain insights.
非线性随机变点模型的随机版EM算法
随机效应变点模型通常用于推断引起纵向数据趋势变化的事件的个体特定时间。在变化点前后通常采用线性模型。然而,在艾滋病毒研究等应用中,可以根据潜在的数据生成机制为这一过程推导出一种机制非线性模型,这种非线性模型可能提供更好的“预测”。在本文中,我们提出了一个随机变点模型,其中我们用分段的非线性混合效应模型来模拟纵向数据。在推理方面,我们提出了一个最大似然解,其中我们使用随机期望最大化(StEM)算法以及通过吉布斯采样器进行的独立多元拒绝抽样。我们用模拟来评估该方法以获得见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信