{"title":"Stochastic Version of EM Algorithm for Nonlinear Random ChangePoint Models","authors":"Hongbin Zhang, Binod Manandhar","doi":"10.11159/icsta21.119","DOIUrl":null,"url":null,"abstract":"Random effect change-point models are commonly used to infer individual-specific time of event that induces trend change of longitudinal data. Linear models are often employed before and after the change point. However, in applications such as HIV studies, a mechanistic nonlinear model can be derived for the process based on the underlying data-generation mechanisms and such nonlinear model may provide better ``predictions\". In this article, we propose a random change-point model in which we model the longitudinal data by segmented nonlinear mixed effect models. Inference wise, we propose a maximum likelihood solution where we use the Stochastic Expectation-Maximization (StEM) algorithm coupled with independent multivariate rejection sampling through Gibbs’s sampler. We evaluate the method with simulations to gain insights.","PeriodicalId":403959,"journal":{"name":"Proceedings of the 3rd International Conference on Statistics: Theory and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Statistics: Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11159/icsta21.119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Random effect change-point models are commonly used to infer individual-specific time of event that induces trend change of longitudinal data. Linear models are often employed before and after the change point. However, in applications such as HIV studies, a mechanistic nonlinear model can be derived for the process based on the underlying data-generation mechanisms and such nonlinear model may provide better ``predictions". In this article, we propose a random change-point model in which we model the longitudinal data by segmented nonlinear mixed effect models. Inference wise, we propose a maximum likelihood solution where we use the Stochastic Expectation-Maximization (StEM) algorithm coupled with independent multivariate rejection sampling through Gibbs’s sampler. We evaluate the method with simulations to gain insights.