Clustering algorithm-based control charts

J. Kang, S. Kim
{"title":"Clustering algorithm-based control charts","authors":"J. Kang, S. Kim","doi":"10.1109/ISI.2011.5984096","DOIUrl":null,"url":null,"abstract":"Hotelling's T2 control chart is widely used as a representative method to efficiently monitor multivariate processes. However, they have some parametric restrictions that may not be applicable for modern manufacturing systems complicated. In the present study we propose a clustering algorithm-based control chart that overcomes the limitation posed by the parametric assumption in existing control chart methods. The simulation results showed that the proposed clustering algorithm-based control charts outperformed Hotelling's T2 control charts especially when process data follow the nonnormal distributions.","PeriodicalId":220165,"journal":{"name":"Proceedings of 2011 IEEE International Conference on Intelligence and Security Informatics","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2011 IEEE International Conference on Intelligence and Security Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISI.2011.5984096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Hotelling's T2 control chart is widely used as a representative method to efficiently monitor multivariate processes. However, they have some parametric restrictions that may not be applicable for modern manufacturing systems complicated. In the present study we propose a clustering algorithm-based control chart that overcomes the limitation posed by the parametric assumption in existing control chart methods. The simulation results showed that the proposed clustering algorithm-based control charts outperformed Hotelling's T2 control charts especially when process data follow the nonnormal distributions.
基于聚类算法的控制图
Hotelling’s T2控制图作为一种有效监控多变量过程的代表性方法被广泛使用。然而,它们有一些参数限制,可能不适用于复杂的现代制造系统。在本研究中,我们提出了一种基于聚类算法的控制图,克服了现有控制图方法中参数假设的局限性。仿真结果表明,当过程数据服从非正态分布时,基于聚类算法的控制图优于Hotelling的T2控制图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信