{"title":"Advancements in OCR: A Deep Learning Algorithm for Enhanced Text Recognition","authors":"Parikshit Sharma","doi":"10.35940/ijies.f4263.0810823","DOIUrl":null,"url":null,"abstract":"Optical Character Recognition (OCR) has significantly evolved with the rise of deep learning techniques. In this research paper, we present a novel and advanced OCR algorithm that leverages the power of deep learning for improved text recognition accuracy. Traditional OCR methods have faced limitations in handling complex layouts, noisy images, and diverse fonts, affecting overall performance. Our proposed algorithm addresses these challenges through the integration of deep neural networks, specifically convolutional and recurrent layers. The algorithm undergoes comprehensive training on large-scale datasets, enabling it to learn intricate patterns and features, resulting in robust recognition capabilities. Furthermore, we introduce an attention mechanism that enhances the model's ability to focus on critical text regions, enhancing accuracy and efficiency. Through extensive experiments and evaluations on benchmark datasets, we demonstrate the superiority of our deep learning-based OCR algorithm over conventional approaches. Our algorithm achieves state-of-the-art performance on various OCR tasks, including multilingual text recognition and document digitization. Additionally, we conduct an in-depth analysis of the algorithm's behaviour under various scenarios, such as low-resolution inputs and challenging environmental conditions. The findings from this research not only contribute to the field of OCR but also open avenues for applications in document analysis, text extraction, and content digitization in real-world scenarios. The integration of deep learning in OCR showcases its potential in revolutionising text recognition tasks, pushing the boundaries of accuracy and efficiency in this domain.","PeriodicalId":281681,"journal":{"name":"International Journal of Inventive Engineering and Sciences","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Inventive Engineering and Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35940/ijies.f4263.0810823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Optical Character Recognition (OCR) has significantly evolved with the rise of deep learning techniques. In this research paper, we present a novel and advanced OCR algorithm that leverages the power of deep learning for improved text recognition accuracy. Traditional OCR methods have faced limitations in handling complex layouts, noisy images, and diverse fonts, affecting overall performance. Our proposed algorithm addresses these challenges through the integration of deep neural networks, specifically convolutional and recurrent layers. The algorithm undergoes comprehensive training on large-scale datasets, enabling it to learn intricate patterns and features, resulting in robust recognition capabilities. Furthermore, we introduce an attention mechanism that enhances the model's ability to focus on critical text regions, enhancing accuracy and efficiency. Through extensive experiments and evaluations on benchmark datasets, we demonstrate the superiority of our deep learning-based OCR algorithm over conventional approaches. Our algorithm achieves state-of-the-art performance on various OCR tasks, including multilingual text recognition and document digitization. Additionally, we conduct an in-depth analysis of the algorithm's behaviour under various scenarios, such as low-resolution inputs and challenging environmental conditions. The findings from this research not only contribute to the field of OCR but also open avenues for applications in document analysis, text extraction, and content digitization in real-world scenarios. The integration of deep learning in OCR showcases its potential in revolutionising text recognition tasks, pushing the boundaries of accuracy and efficiency in this domain.