Hybrid Model for Named Entity Recognition

N. Chaturvedi, Jigyasu Dubey
{"title":"Hybrid Model for Named Entity Recognition","authors":"N. Chaturvedi, Jigyasu Dubey","doi":"10.4018/ijdai.311063","DOIUrl":null,"url":null,"abstract":"Named entity recognition is an important factor that has a direct and significant impact on the quality of neural sequence labelling. It entails choosing encoding input data to create grammatical and semantic representation vectors. The main goal of this research is to provide a hybrid neural network model for a specific sequence labelling task such as named entity recognition. Three subnetworks are used in this hybrid model to ensure that information at the character, capitalization levels, and word-level contextual representation is fully utilized. The authors used different samples for training and development sets on the CoNLL-2003 dataset to show that the model could compare its performance to that of other state-of-the-art models.","PeriodicalId":176325,"journal":{"name":"International Journal of Distributed Artificial Intelligence","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Distributed Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijdai.311063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Named entity recognition is an important factor that has a direct and significant impact on the quality of neural sequence labelling. It entails choosing encoding input data to create grammatical and semantic representation vectors. The main goal of this research is to provide a hybrid neural network model for a specific sequence labelling task such as named entity recognition. Three subnetworks are used in this hybrid model to ensure that information at the character, capitalization levels, and word-level contextual representation is fully utilized. The authors used different samples for training and development sets on the CoNLL-2003 dataset to show that the model could compare its performance to that of other state-of-the-art models.
命名实体识别的混合模型
命名实体识别是直接影响神经序列标记质量的重要因素。它需要选择编码输入数据来创建语法和语义表示向量。本研究的主要目标是为特定序列标记任务(如命名实体识别)提供一种混合神经网络模型。在这个混合模型中使用了三个子网,以确保字符级、大写级别和单词级上下文表示的信息得到充分利用。作者在CoNLL-2003数据集上使用了不同的训练和开发样本,以表明该模型可以将其性能与其他最先进的模型进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信