Convolutional Neural Network and Support Vector Machine in Classification of Flower Images

Ari Peryanto, A. Yudhana, R. Umar
{"title":"Convolutional Neural Network and Support Vector Machine in Classification of Flower Images","authors":"Ari Peryanto, A. Yudhana, R. Umar","doi":"10.23917/khif.v8i1.15531","DOIUrl":null,"url":null,"abstract":"- Flowers are among the raw materials in many industries including the pharmaceuticals and cosmetics. Manual classification of flowers requires expert judgment of a botanist and can be time consuming and inconsistent. The ability to classify flowers using computers and technology is the right solution to solve this problem. There are two algorithms that are popular in image classification, namely Convolutional Neural Network (CNN) and Support Vector Machine (SVM). CNN is one of deep neural network classification algorithms while SVM is one of machine learning algorithm. This research was an effort to determine the best performer of the two methods in flower image classification. Our observation suggests that CNN outperform SVM in flower image classification. CNN gives an accuracy of 91.6%, precision of 91.6%, recall of 91.6% and F1 Score of 91.6%.","PeriodicalId":326094,"journal":{"name":"Khazanah Informatika : Jurnal Ilmu Komputer dan Informatika","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Khazanah Informatika : Jurnal Ilmu Komputer dan Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23917/khif.v8i1.15531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

- Flowers are among the raw materials in many industries including the pharmaceuticals and cosmetics. Manual classification of flowers requires expert judgment of a botanist and can be time consuming and inconsistent. The ability to classify flowers using computers and technology is the right solution to solve this problem. There are two algorithms that are popular in image classification, namely Convolutional Neural Network (CNN) and Support Vector Machine (SVM). CNN is one of deep neural network classification algorithms while SVM is one of machine learning algorithm. This research was an effort to determine the best performer of the two methods in flower image classification. Our observation suggests that CNN outperform SVM in flower image classification. CNN gives an accuracy of 91.6%, precision of 91.6%, recall of 91.6% and F1 Score of 91.6%.
卷积神经网络与支持向量机在花卉图像分类中的应用
鲜花是许多行业的原料之一,包括制药和化妆品。花的人工分类需要植物学家的专业判断,而且耗时且不一致。使用计算机和技术对花卉进行分类的能力是解决这个问题的正确解决方案。在图像分类中有两种比较流行的算法,分别是卷积神经网络(CNN)和支持向量机(SVM)。CNN是一种深度神经网络分类算法,而SVM是一种机器学习算法。本研究旨在确定两种方法在花卉图像分类中的最佳表现。我们的观察表明,CNN在花卉图像分类方面优于SVM。CNN给出的准确率为91.6%,精密度为91.6%,召回率为91.6%,F1 Score为91.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信