Geometric integration of nonlinear dynamical systems

S. Andrianov, N. Edamenko
{"title":"Geometric integration of nonlinear dynamical systems","authors":"S. Andrianov, N. Edamenko","doi":"10.1109/SCP.2015.7342048","DOIUrl":null,"url":null,"abstract":"In modern literature, the geometric integration means numerical integration of differential equations that provides an accurate preservation of one or more “geometric” properties within rounding error. Among these properties we have to mention first conservation of energy, of momentum, of angular momentum, of volume of the phase space, of time-reversal symmetry, of symplectic structure (volume conservation) etc. In this article we consider the concept of geometrical integration using Lie transformations generated by dynamical system on the one hand, and matrix representation for corresponding evolution operators on the other hand. Examples of solutions for some test problems and of practical problems are given.","PeriodicalId":110366,"journal":{"name":"2015 International Conference \"Stability and Control Processes\" in Memory of V.I. Zubov (SCP)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference \"Stability and Control Processes\" in Memory of V.I. Zubov (SCP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCP.2015.7342048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In modern literature, the geometric integration means numerical integration of differential equations that provides an accurate preservation of one or more “geometric” properties within rounding error. Among these properties we have to mention first conservation of energy, of momentum, of angular momentum, of volume of the phase space, of time-reversal symmetry, of symplectic structure (volume conservation) etc. In this article we consider the concept of geometrical integration using Lie transformations generated by dynamical system on the one hand, and matrix representation for corresponding evolution operators on the other hand. Examples of solutions for some test problems and of practical problems are given.
非线性动力系统的几何积分
在现代文献中,几何积分是指微分方程的数值积分,它在舍入误差范围内精确地保留了一个或多个“几何”性质。在这些性质中,我们必须首先提到能量守恒,动量守恒,角动量守恒,相空间体积守恒,时间反转对称性守恒,辛结构守恒(体积守恒)等等。本文一方面考虑了由动力系统生成的李变换的几何积分概念,另一方面考虑了相应演化算子的矩阵表示。给出了一些测试问题和实际问题的解法实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信