Data exploration of turbulence simulations using a database cluster

E. Perlman, R. Burns, Yi Li, C. Meneveau
{"title":"Data exploration of turbulence simulations using a database cluster","authors":"E. Perlman, R. Burns, Yi Li, C. Meneveau","doi":"10.1145/1362622.1362654","DOIUrl":null,"url":null,"abstract":"We describe a new environment for the exploration of turbulent flows that uses a cluster of databases to store complete histories of Direct Numerical Simulation (DNS) results. This allows for spatial and temporal exploration of high-resolution data that were traditionally too large to store and too computationally expensive to produce on demand. We perform analysis of these data directly on the databases nodes, which minimizes the volume of network traffic. The low network demands enable us to provide public access to this experimental platform and its datasets through Web services. This paper details the system design and implementation. Specifically, we focus on hierarchical spatial indexing, cache-sensitive spatial scheduling of batch workloads, localizing computation through data partitioning, and load balancing techniques that minimize data movement. We provide real examples of how scientists use the system to perform high-resolution turbulence research from standard desktop computing environments.","PeriodicalId":274744,"journal":{"name":"Proceedings of the 2007 ACM/IEEE Conference on Supercomputing (SC '07)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"241","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2007 ACM/IEEE Conference on Supercomputing (SC '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1362622.1362654","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 241

Abstract

We describe a new environment for the exploration of turbulent flows that uses a cluster of databases to store complete histories of Direct Numerical Simulation (DNS) results. This allows for spatial and temporal exploration of high-resolution data that were traditionally too large to store and too computationally expensive to produce on demand. We perform analysis of these data directly on the databases nodes, which minimizes the volume of network traffic. The low network demands enable us to provide public access to this experimental platform and its datasets through Web services. This paper details the system design and implementation. Specifically, we focus on hierarchical spatial indexing, cache-sensitive spatial scheduling of batch workloads, localizing computation through data partitioning, and load balancing techniques that minimize data movement. We provide real examples of how scientists use the system to perform high-resolution turbulence research from standard desktop computing environments.
使用数据库集群进行湍流模拟的数据探索
我们描述了一个探索湍流的新环境,它使用一组数据库来存储直接数值模拟(DNS)结果的完整历史。这允许对高分辨率数据进行空间和时间探索,这些数据传统上太大而无法存储,并且计算成本太高而无法按需生成。我们直接在数据库节点上对这些数据进行分析,从而最大限度地减少了网络流量。低网络需求使我们能够通过Web服务向公众提供对该实验平台及其数据集的访问。本文详细介绍了系统的设计与实现。具体来说,我们将关注分层空间索引、批处理工作负载的缓存敏感空间调度、通过数据分区进行本地化计算以及最小化数据移动的负载平衡技术。我们提供了科学家如何使用该系统在标准桌面计算环境中执行高分辨率湍流研究的真实示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信