Siming Chen, Shuai Chen, Zhenhuang Wang, Jie Liang, Xiaoru Yuan, Nan Cao, Yadong Wu
{"title":"D-Map: Visual analysis of ego-centric information diffusion patterns in social media","authors":"Siming Chen, Shuai Chen, Zhenhuang Wang, Jie Liang, Xiaoru Yuan, Nan Cao, Yadong Wu","doi":"10.1109/VAST.2016.7883510","DOIUrl":null,"url":null,"abstract":"Popular social media platforms could rapidly propagate vital information over social networks among a significant number of people. In this work we present D-Map (Diffusion Map), a novel visualization method to support exploration and analysis of social behaviors during such information diffusion and propagation on typical social media through a map metaphor. In D-Map, users who participated in reposting (i.e., resending a message initially posted by others) one central user's posts (i.e., a series of original tweets) are collected and mapped to a hexagonal grid based on their behavior similarities and in chronological order of the repostings. With additional interaction and linking, D-Map is capable of providing visual portraits of the influential users and describing their social behaviors. A comprehensive visual analysis system is developed to support interactive exploration with D-Map. We evaluate our work with real world social media data and find interesting patterns among users. Key players, important information diffusion paths, and interactions among social communities can be identified.","PeriodicalId":357817,"journal":{"name":"2016 IEEE Conference on Visual Analytics Science and Technology (VAST)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Visual Analytics Science and Technology (VAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VAST.2016.7883510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46
Abstract
Popular social media platforms could rapidly propagate vital information over social networks among a significant number of people. In this work we present D-Map (Diffusion Map), a novel visualization method to support exploration and analysis of social behaviors during such information diffusion and propagation on typical social media through a map metaphor. In D-Map, users who participated in reposting (i.e., resending a message initially posted by others) one central user's posts (i.e., a series of original tweets) are collected and mapped to a hexagonal grid based on their behavior similarities and in chronological order of the repostings. With additional interaction and linking, D-Map is capable of providing visual portraits of the influential users and describing their social behaviors. A comprehensive visual analysis system is developed to support interactive exploration with D-Map. We evaluate our work with real world social media data and find interesting patterns among users. Key players, important information diffusion paths, and interactions among social communities can be identified.