Investigating Deep Neural Networks for Speaker Diarization in the DIHARD Challenge

Ivan Himawan, M. Rahman, S. Sridharan, C. Fookes, A. Kanagasundaram
{"title":"Investigating Deep Neural Networks for Speaker Diarization in the DIHARD Challenge","authors":"Ivan Himawan, M. Rahman, S. Sridharan, C. Fookes, A. Kanagasundaram","doi":"10.1109/SLT.2018.8639630","DOIUrl":null,"url":null,"abstract":"We investigate the use of deep neural networks (DNNs) for the speaker diarization task to improve performance under domain mismatched conditions. Three unsupervised domain adaptation techniques, namely inter-dataset variability compensation (IDVC), domain-invariant covariance normalization (DICN), and domain mismatch modeling (DMM), are applied on DNN based speaker embeddings to compensate for the mismatch in the embedding subspace. We present results conducted on the DIHARD data, which was released for the 2018 diarization challenge. Collected from a diverse set of domains, this data provides very challenging domain mismatched conditions for the diarization task. Our results provide insights into how the performance of our proposed system could be further improved.","PeriodicalId":377307,"journal":{"name":"2018 IEEE Spoken Language Technology Workshop (SLT)","volume":"106 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2018.8639630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We investigate the use of deep neural networks (DNNs) for the speaker diarization task to improve performance under domain mismatched conditions. Three unsupervised domain adaptation techniques, namely inter-dataset variability compensation (IDVC), domain-invariant covariance normalization (DICN), and domain mismatch modeling (DMM), are applied on DNN based speaker embeddings to compensate for the mismatch in the embedding subspace. We present results conducted on the DIHARD data, which was released for the 2018 diarization challenge. Collected from a diverse set of domains, this data provides very challenging domain mismatched conditions for the diarization task. Our results provide insights into how the performance of our proposed system could be further improved.
在DIHARD挑战中研究深度神经网络对说话人分化的影响
我们研究了深度神经网络(dnn)在说话人分类任务中的使用,以提高在域不匹配条件下的性能。在基于深度神经网络的说话人嵌入中应用了三种无监督域自适应技术,即数据集间可变性补偿(IDVC)、域不变协方差归一化(DICN)和域失配建模(DMM)来补偿嵌入子空间中的失配。我们展示了对DIHARD数据进行的研究结果,这些数据是为2018年的数字化挑战而发布的。这些数据收集自不同的域,为词化任务提供了非常具有挑战性的域不匹配条件。我们的结果为如何进一步改进我们所提议的系统的性能提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信