{"title":"Visualization of a Virtual Caenorhabditis elegans in WebGL","authors":"A. Mujika, Gorka Epelde, A. Mauro, D. Oyarzun","doi":"10.5220/0005168301640168","DOIUrl":null,"url":null,"abstract":"This paper presents the work that has been done in Si elegans project in order to visualize the locomotion and the behaviour of a virtual reproduction of the nematode Caenorhabditis elegans, one of the most studied animal in neuroscience. The project aims to develop the first hardware-based computing framework that will accurately mimic this worm. It will enable complex and realistic behaviour to emerge through interaction with a rich and dynamic simulation of a natural or laboratory environment. In order to visualize the physical behaviours that emerge from the neuronal system that has been constructed in the project, a web environment has been designed where the user will be able to define an assay and to run it in a WebGL-based 3D virtual arena. For that a relation has been defined from the physics based simulation (run on the server side) and the simplified web rendering of it.","PeriodicalId":167011,"journal":{"name":"International Congress on Neurotechnology, Electronics and Informatics","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Congress on Neurotechnology, Electronics and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0005168301640168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
This paper presents the work that has been done in Si elegans project in order to visualize the locomotion and the behaviour of a virtual reproduction of the nematode Caenorhabditis elegans, one of the most studied animal in neuroscience. The project aims to develop the first hardware-based computing framework that will accurately mimic this worm. It will enable complex and realistic behaviour to emerge through interaction with a rich and dynamic simulation of a natural or laboratory environment. In order to visualize the physical behaviours that emerge from the neuronal system that has been constructed in the project, a web environment has been designed where the user will be able to define an assay and to run it in a WebGL-based 3D virtual arena. For that a relation has been defined from the physics based simulation (run on the server side) and the simplified web rendering of it.