Declarative Experimentation in Information Retrieval using PyTerrier

C. Macdonald, N. Tonellotto
{"title":"Declarative Experimentation in Information Retrieval using PyTerrier","authors":"C. Macdonald, N. Tonellotto","doi":"10.1145/3409256.3409829","DOIUrl":null,"url":null,"abstract":"The advent of deep machine learning platforms such as Tensorflow and Pytorch, developed in expressive high-level languages such as Python, have allowed more expressive representations of deep neural network architectures. We argue that such a powerful formalism is missing in information retrieval (IR), and propose a framework called PyTerrier that allows advanced retrieval pipelines to be expressed, and evaluated, in a declarative manner close to their conceptual design. Like the aforementioned frameworks that compile deep learning experiments into primitive GPU operations, our framework targets IR platforms as backends in order to execute and evaluate retrieval pipelines. Further, we can automatically optimise the retrieval pipelines to increase their efficiency to suite a particular IR platform backend. Our experiments, conducted on TREC Robust and ClueWeb09 test collections, demonstrate the efficiency benefits of these optimisations for retrieval pipelines involving both the Anserini and Terrier IR platforms.","PeriodicalId":430907,"journal":{"name":"Proceedings of the 2020 ACM SIGIR on International Conference on Theory of Information Retrieval","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"85","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 ACM SIGIR on International Conference on Theory of Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3409256.3409829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 85

Abstract

The advent of deep machine learning platforms such as Tensorflow and Pytorch, developed in expressive high-level languages such as Python, have allowed more expressive representations of deep neural network architectures. We argue that such a powerful formalism is missing in information retrieval (IR), and propose a framework called PyTerrier that allows advanced retrieval pipelines to be expressed, and evaluated, in a declarative manner close to their conceptual design. Like the aforementioned frameworks that compile deep learning experiments into primitive GPU operations, our framework targets IR platforms as backends in order to execute and evaluate retrieval pipelines. Further, we can automatically optimise the retrieval pipelines to increase their efficiency to suite a particular IR platform backend. Our experiments, conducted on TREC Robust and ClueWeb09 test collections, demonstrate the efficiency benefits of these optimisations for retrieval pipelines involving both the Anserini and Terrier IR platforms.
利用PyTerrier进行信息检索的陈述性实验
深度机器学习平台(如Tensorflow和Pytorch)的出现,是用表达性强的高级语言(如Python)开发的,使得深度神经网络架构的表达能力更强。我们认为在信息检索(IR)中缺少如此强大的形式化,并提出了一个名为PyTerrier的框架,该框架允许以接近其概念设计的声明性方式表达和评估高级检索管道。就像前面提到的将深度学习实验编译成原始GPU操作的框架一样,我们的框架将IR平台作为后端,以执行和评估检索管道。此外,我们可以自动优化检索管道,以提高其效率,以适应特定的IR平台后端。我们在TREC Robust和ClueWeb09测试集合上进行的实验,证明了这些优化对于涉及Anserini和Terrier IR平台的检索管道的效率优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信