{"title":"Efficient parent selection for Approximation-Guided Evolutionary multi-objective optimization","authors":"Markus Wagner, T. Friedrich","doi":"10.1109/CEC.2013.6557784","DOIUrl":null,"url":null,"abstract":"The Pareto front of a multi-objective optimization problem is typically very large and can only be approximated. Approximation-Guided Evolution (AGE) is a recently presented evolutionary multi-objective optimization algorithm that aims at minimizing iteratively the approximation factor, which measures how well the current population approximates the Pareto front. It outperforms state-of-the-art algorithms for problems with many objectives. However, AGE's performance is not competitive on problems with very few objectives. We study the reason for this behavior and observe that AGE selects parents uniformly at random, which has a detrimental effect on its performance. We then investigate different algorithm-specific selection strategies for AGE. The main difficulty here is finding a computationally efficient selection scheme which does not harm AGEs linear runtime in the number of objectives. We present several improved selections schemes that are computationally efficient and substantially improve AGE on low-dimensional objective spaces, but have no negative effect in high-dimensional objective spaces.","PeriodicalId":211988,"journal":{"name":"2013 IEEE Congress on Evolutionary Computation","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2013.6557784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
The Pareto front of a multi-objective optimization problem is typically very large and can only be approximated. Approximation-Guided Evolution (AGE) is a recently presented evolutionary multi-objective optimization algorithm that aims at minimizing iteratively the approximation factor, which measures how well the current population approximates the Pareto front. It outperforms state-of-the-art algorithms for problems with many objectives. However, AGE's performance is not competitive on problems with very few objectives. We study the reason for this behavior and observe that AGE selects parents uniformly at random, which has a detrimental effect on its performance. We then investigate different algorithm-specific selection strategies for AGE. The main difficulty here is finding a computationally efficient selection scheme which does not harm AGEs linear runtime in the number of objectives. We present several improved selections schemes that are computationally efficient and substantially improve AGE on low-dimensional objective spaces, but have no negative effect in high-dimensional objective spaces.