Two-Level Hierarchical Hybrid SVM-RVM Classification Model

Catarina Silva, B. Ribeiro
{"title":"Two-Level Hierarchical Hybrid SVM-RVM Classification Model","authors":"Catarina Silva, B. Ribeiro","doi":"10.1109/ICMLA.2006.52","DOIUrl":null,"url":null,"abstract":"Support vector machines (SVM) and relevance vector machines (RVM) constitute two state-of-the-art learning machines that are currently focus of cutting-edge research. SVM present accuracy and complexity preponderance, but are surpassed by RVM when probabilistic outputs or kernel selection come to discussion. We propose a two-level hierarchical hybrid SVM-RVM model to combine the best of both learning machines. The proposed model first level uses an RVM to determine the less confident classified examples and the second level then makes use of an SVM to learn and classify the tougher examples. We show the benefits of the hierarchical approach on a text classification task, where the two-levels outperform both learning machines","PeriodicalId":297071,"journal":{"name":"2006 5th International Conference on Machine Learning and Applications (ICMLA'06)","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 5th International Conference on Machine Learning and Applications (ICMLA'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2006.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Support vector machines (SVM) and relevance vector machines (RVM) constitute two state-of-the-art learning machines that are currently focus of cutting-edge research. SVM present accuracy and complexity preponderance, but are surpassed by RVM when probabilistic outputs or kernel selection come to discussion. We propose a two-level hierarchical hybrid SVM-RVM model to combine the best of both learning machines. The proposed model first level uses an RVM to determine the less confident classified examples and the second level then makes use of an SVM to learn and classify the tougher examples. We show the benefits of the hierarchical approach on a text classification task, where the two-levels outperform both learning machines
两级分层混合SVM-RVM分类模型
支持向量机(SVM)和相关向量机(RVM)是两种最先进的学习机器,是目前研究的热点。支持向量机具有精度和复杂性优势,但在讨论概率输出或核选择时被RVM超越。我们提出了一种两级分层混合SVM-RVM模型来结合这两种学习机的优点。所提出的模型第一层使用RVM来确定可信度较低的分类示例,第二层使用SVM来学习和分类较难的示例。我们展示了分层方法在文本分类任务上的好处,其中两层方法优于两种学习机器
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信