Supervised and unsupervised feature extraction from a cochlear model for speech recognition

N. Intrator, G. Tajchman
{"title":"Supervised and unsupervised feature extraction from a cochlear model for speech recognition","authors":"N. Intrator, G. Tajchman","doi":"10.1109/NNSP.1991.239495","DOIUrl":null,"url":null,"abstract":"The authors explore the application of a novel classification method that combines supervised and unsupervised training, and compare its performance to various more classical methods. The authors first construct a detailed high dimensional representation of the speech signal using Lyon's cochlear model and then optimally reduce its dimensionality. The resulting low dimensional projection retains the information needed for robust speech recognition.<<ETX>>","PeriodicalId":354832,"journal":{"name":"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.1991.239495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

The authors explore the application of a novel classification method that combines supervised and unsupervised training, and compare its performance to various more classical methods. The authors first construct a detailed high dimensional representation of the speech signal using Lyon's cochlear model and then optimally reduce its dimensionality. The resulting low dimensional projection retains the information needed for robust speech recognition.<>
基于人工耳蜗模型的有监督与无监督特征提取
作者探索了一种结合监督和无监督训练的新型分类方法的应用,并将其性能与各种更经典的方法进行了比较。作者首先使用里昂耳蜗模型构建了语音信号的详细高维表示,然后优化降低其维数。得到的低维投影保留了鲁棒语音识别所需的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信