Investigating Case Learning Techniques for Agents to Play the Card Game of Truco

Ruan C. B. Moral, G. B. Paulus, J. Assunção, L. A. L. Silva
{"title":"Investigating Case Learning Techniques for Agents to Play the Card Game of Truco","authors":"Ruan C. B. Moral, G. B. Paulus, J. Assunção, L. A. L. Silva","doi":"10.1109/SBGames51465.2020.00024","DOIUrl":null,"url":null,"abstract":"Truco is a popular game in many regions of South America; however, unlike worldwide games, Truco still requires a competitive Artificial Intelligence. Due to the limited availability of Truco data and the stochastic and imperfect information characteristics of the game, creating competitive models for a card game like Truco is a challenging task. To approach this problem, this work investigates the generation of concrete Truco problem-solving experiences through alternative techniques of automatic case generation and active learning, aiming to learn with the retention of cases in case bases. From this, these case bases guide the playing actions of the implemented Truco bots permitting to assess the capabilities of each bot, all implemented with Case-Based Reasoning (CBR) techniques.","PeriodicalId":335816,"journal":{"name":"2020 19th Brazilian Symposium on Computer Games and Digital Entertainment (SBGames)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 19th Brazilian Symposium on Computer Games and Digital Entertainment (SBGames)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBGames51465.2020.00024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Truco is a popular game in many regions of South America; however, unlike worldwide games, Truco still requires a competitive Artificial Intelligence. Due to the limited availability of Truco data and the stochastic and imperfect information characteristics of the game, creating competitive models for a card game like Truco is a challenging task. To approach this problem, this work investigates the generation of concrete Truco problem-solving experiences through alternative techniques of automatic case generation and active learning, aiming to learn with the retention of cases in case bases. From this, these case bases guide the playing actions of the implemented Truco bots permitting to assess the capabilities of each bot, all implemented with Case-Based Reasoning (CBR) techniques.
基于案例学习技术的智能体Truco纸牌游戏研究
在南美洲的许多地区,打橄榄球是一种很流行的游戏;然而,与世界范围的游戏不同,《Truco》仍然需要具有竞争力的人工智能。由于Truco数据的有限可用性以及游戏的随机和不完全信息特征,为像Truco这样的纸牌游戏创建竞争性模型是一项具有挑战性的任务。为了解决这个问题,本研究通过自动案例生成和主动学习的替代技术研究了具体的Truco问题解决经验的生成,旨在通过案例库中的案例保留来学习。基于此,这些案例基础将指导所执行的Truco bot的游戏行动,从而能够评估每个bot的能力,所有这些都将使用基于案例的推理(CBR)技术来执行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信