A graphical model for computing the minimum cost transposition distance

Farzad Farnoud, Chien-Yu Chen, O. Milenkovic, N. Kashyap
{"title":"A graphical model for computing the minimum cost transposition distance","authors":"Farzad Farnoud, Chien-Yu Chen, O. Milenkovic, N. Kashyap","doi":"10.1109/CIG.2010.5592890","DOIUrl":null,"url":null,"abstract":"We address the problem of finding the minimum decomposition of a permutation in terms of transpositions with non-uniform cost. For metric-path costs, we describe exact polynomial-time decomposition algorithms. For extended-metric-path cost functions, we describe polynomial-time constant-approximation decomposition algorithms. Our algorithms rely on graphical representations of permutations and graph-search techniques for minimizing the permutation decomposition cost. The presented algorithms have applications in information theory, bioinformatics, and algebra.","PeriodicalId":354925,"journal":{"name":"2010 IEEE Information Theory Workshop","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Information Theory Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2010.5592890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We address the problem of finding the minimum decomposition of a permutation in terms of transpositions with non-uniform cost. For metric-path costs, we describe exact polynomial-time decomposition algorithms. For extended-metric-path cost functions, we describe polynomial-time constant-approximation decomposition algorithms. Our algorithms rely on graphical representations of permutations and graph-search techniques for minimizing the permutation decomposition cost. The presented algorithms have applications in information theory, bioinformatics, and algebra.
计算最小代价换乘距离的图形模型
我们解决的问题是找到最小分解的置换与非均匀的代价。对于度量路径代价,我们描述了精确的多项式时间分解算法。对于扩展度量路径代价函数,我们描述了多项式时间常数近似分解算法。我们的算法依赖于排列的图形表示和图搜索技术来最小化排列分解成本。提出的算法在信息论、生物信息学和代数中都有应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信