Multiscale wavelet preprocessing for fuzzy systems

A. Popoola, S. Ahmad, K. Ahmad
{"title":"Multiscale wavelet preprocessing for fuzzy systems","authors":"A. Popoola, S. Ahmad, K. Ahmad","doi":"10.1109/CIMA.2005.1662357","DOIUrl":null,"url":null,"abstract":"Fuzzy systems, also referred to as universal approximators, have been used to model real-world data. In this paper, we examine the prediction performance of fuzzy subtractive-clustering models on time series with trends, seasonalities, and discontinuities. Our results indicate that wavelet preprocessing improves forecast accuracy for time series that exhibit variance changes and other complex local behavior. Conversely, for time series that exhibit no significant structural breaks or variance changes, fuzzy models trained on raw data perform better than hybrid fuzzy-wavelet models. Further work is required to investigate the use of wavelet variance profile of time series to determine the suitability of the application of wavelet-based preprocessing on prediction models","PeriodicalId":306045,"journal":{"name":"2005 ICSC Congress on Computational Intelligence Methods and Applications","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 ICSC Congress on Computational Intelligence Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIMA.2005.1662357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Fuzzy systems, also referred to as universal approximators, have been used to model real-world data. In this paper, we examine the prediction performance of fuzzy subtractive-clustering models on time series with trends, seasonalities, and discontinuities. Our results indicate that wavelet preprocessing improves forecast accuracy for time series that exhibit variance changes and other complex local behavior. Conversely, for time series that exhibit no significant structural breaks or variance changes, fuzzy models trained on raw data perform better than hybrid fuzzy-wavelet models. Further work is required to investigate the use of wavelet variance profile of time series to determine the suitability of the application of wavelet-based preprocessing on prediction models
模糊系统的多尺度小波预处理
模糊系统,也被称为通用逼近器,已经被用来模拟真实世界的数据。在本文中,我们研究模糊减法聚类模型对具有趋势、季节性和不连续的时间序列的预测性能。结果表明,小波预处理可以提高具有方差变化和其他复杂局部行为的时间序列的预测精度。相反,对于没有明显结构断裂或方差变化的时间序列,在原始数据上训练的模糊模型比混合模糊小波模型表现得更好。利用时间序列的小波方差曲线来确定小波预处理在预测模型上的适用性还需要进一步的研究
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信