Increasingly Packing Multiple Facial-Informatics Modules in A Unified Deep-Learning Model via Lifelong Learning

Steven C. Y. Hung, Jia-Hong Lee, Timmy S. T. Wan, Chien-Hung Chen, Yi-Ming Chan, Chu-Song Chen
{"title":"Increasingly Packing Multiple Facial-Informatics Modules in A Unified Deep-Learning Model via Lifelong Learning","authors":"Steven C. Y. Hung, Jia-Hong Lee, Timmy S. T. Wan, Chien-Hung Chen, Yi-Ming Chan, Chu-Song Chen","doi":"10.1145/3323873.3325053","DOIUrl":null,"url":null,"abstract":"Simultaneously running multiple modules is a key requirement for a smart multimedia system for facial applications including face recognition, facial expression understanding, and gender identification. To effectively integrate them, a continual learning approach to learn new tasks without forgetting is introduced. Unlike previous methods growing monotonically in size, our approach maintains the compactness in continual learning. The proposed packing-and-expanding method is effective and easy to implement, which can iteratively shrink and enlarge the model to integrate new functions. Our integrated multitask model can achieve similar accuracy with only 39.9% of the original size.","PeriodicalId":149041,"journal":{"name":"Proceedings of the 2019 on International Conference on Multimedia Retrieval","volume":"59 24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 on International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3323873.3325053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

Simultaneously running multiple modules is a key requirement for a smart multimedia system for facial applications including face recognition, facial expression understanding, and gender identification. To effectively integrate them, a continual learning approach to learn new tasks without forgetting is introduced. Unlike previous methods growing monotonically in size, our approach maintains the compactness in continual learning. The proposed packing-and-expanding method is effective and easy to implement, which can iteratively shrink and enlarge the model to integrate new functions. Our integrated multitask model can achieve similar accuracy with only 39.9% of the original size.
通过终身学习,越来越多地将多个面部信息学模块打包到统一的深度学习模型中
同时运行多个模块是人脸识别、面部表情理解和性别识别等智能多媒体系统的关键要求。为了有效地整合它们,我们引入了一种持续学习的方法来学习新的任务而不会忘记。与以往的方法在规模上单调增长不同,我们的方法在持续学习中保持了紧凑性。该方法有效且易于实现,可以迭代地缩小和扩大模型以整合新的功能。我们的集成多任务模型可以达到相似的精度,而只有原始尺寸的39.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信