IoT-Malware Detection Based on Byte Sequences of Executable Files

Tzu-Ling Wan, Tao Ban, Yen-Ting Lee, Shin-Ming Cheng, Ryoichi Isawa, Takeshi Takahashi, D. Inoue
{"title":"IoT-Malware Detection Based on Byte Sequences of Executable Files","authors":"Tzu-Ling Wan, Tao Ban, Yen-Ting Lee, Shin-Ming Cheng, Ryoichi Isawa, Takeshi Takahashi, D. Inoue","doi":"10.1109/AsiaJCIS50894.2020.00033","DOIUrl":null,"url":null,"abstract":"Attacks towards the Internet of Things (IoT) devices are on the rise. To enable precaution and countermeasure against IoT malware, we present a cross-platform analysis of IoT malware programs based on static discriminating information extracted directly from ELF binaries. With experiments on a dataset composed of more than 222K samples cross 7 different CPU architectures, we demonstrate that efficient malware detection can be realized with near optimal accuracy.","PeriodicalId":247481,"journal":{"name":"2020 15th Asia Joint Conference on Information Security (AsiaJCIS)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 15th Asia Joint Conference on Information Security (AsiaJCIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AsiaJCIS50894.2020.00033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Attacks towards the Internet of Things (IoT) devices are on the rise. To enable precaution and countermeasure against IoT malware, we present a cross-platform analysis of IoT malware programs based on static discriminating information extracted directly from ELF binaries. With experiments on a dataset composed of more than 222K samples cross 7 different CPU architectures, we demonstrate that efficient malware detection can be realized with near optimal accuracy.
基于可执行文件字节序列的物联网恶意软件检测
针对物联网(IoT)设备的攻击正在上升。为了预防和对抗物联网恶意软件,我们提出了一种基于直接从ELF二进制文件中提取的静态判别信息的物联网恶意软件程序跨平台分析。通过对由7种不同CPU架构的超过222K个样本组成的数据集进行实验,我们证明了有效的恶意软件检测可以以接近最佳的精度实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信