On Cooley-Tukey FFT method for zero padded signals

K. M. Aamir, M. A. Maud, A. Loan
{"title":"On Cooley-Tukey FFT method for zero padded signals","authors":"K. M. Aamir, M. A. Maud, A. Loan","doi":"10.1109/ICET.2005.1558852","DOIUrl":null,"url":null,"abstract":"The classical Cooley-Tukey fast Fourier transform (FFT) algorithm has the computational cost of O(Nlog2N) where N is the length of the discrete signal. Spectrum resolution is improved through padding zeros at the tail of the discrete signal, if (p -1)N zeros are padded (where p is an integer) at the tail of the data sequence, the computational cost through FFT becomes O(pNlog2pN). This paper proposes an alternate instance of padding zeros to the data sequence that results in computational cost reduction to O(pNlog2 N). It has been noted that this modification can be used to achieve non-uniform upsampling that would zoom-in or zoom-out a particular frequency band, in addition, it may be used for pruning the spectrum, which would reduce resolution of an unimportant frequency band","PeriodicalId":222828,"journal":{"name":"Proceedings of the IEEE Symposium on Emerging Technologies, 2005.","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE Symposium on Emerging Technologies, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICET.2005.1558852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The classical Cooley-Tukey fast Fourier transform (FFT) algorithm has the computational cost of O(Nlog2N) where N is the length of the discrete signal. Spectrum resolution is improved through padding zeros at the tail of the discrete signal, if (p -1)N zeros are padded (where p is an integer) at the tail of the data sequence, the computational cost through FFT becomes O(pNlog2pN). This paper proposes an alternate instance of padding zeros to the data sequence that results in computational cost reduction to O(pNlog2 N). It has been noted that this modification can be used to achieve non-uniform upsampling that would zoom-in or zoom-out a particular frequency band, in addition, it may be used for pruning the spectrum, which would reduce resolution of an unimportant frequency band
补零信号的Cooley-Tukey FFT方法
经典的Cooley-Tukey快速傅里叶变换(FFT)算法的计算代价为O(Nlog2N),其中N为离散信号的长度。通过在离散信号尾部填充零来提高频谱分辨率,如果在数据序列尾部填充(p -1)N个零(其中p为整数),则通过FFT的计算成本变为O(pNlog2pN)。本文提出了对数据序列填充零的替代实例,其结果是计算成本降低到O(pNlog2 N)。已经注意到,这种修改可用于实现非均匀上采样,从而放大或缩小特定频段,此外,它可用于修剪频谱,这将降低不重要频段的分辨率
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信