Automatic radar target recognition using superresolution music 2D images and self-organizing neural network

E. Radoi, A. Quinquis, F. Totir, F. Pellen
{"title":"Automatic radar target recognition using superresolution music 2D images and self-organizing neural network","authors":"E. Radoi, A. Quinquis, F. Totir, F. Pellen","doi":"10.5281/ZENODO.38611","DOIUrl":null,"url":null,"abstract":"The key problem in any decision-making system is to gather as much information as possible about the object or the phenomenon under study. In the case of the radar targets the frequency and angular information is integrated to form a radar image, which has high information content. A supper-resolution technique (MUSIC 2D) is used in the paper in order to reconstruct the target image. A supervised self-organizing neural network was developed to classify the images obtained in this way for ten different radar targets in an anechoic chamber.","PeriodicalId":347658,"journal":{"name":"2004 12th European Signal Processing Conference","volume":"111 8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 12th European Signal Processing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.38611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The key problem in any decision-making system is to gather as much information as possible about the object or the phenomenon under study. In the case of the radar targets the frequency and angular information is integrated to form a radar image, which has high information content. A supper-resolution technique (MUSIC 2D) is used in the paper in order to reconstruct the target image. A supervised self-organizing neural network was developed to classify the images obtained in this way for ten different radar targets in an anechoic chamber.
基于超分辨率二维音乐图像和自组织神经网络的雷达目标自动识别
任何决策系统的关键问题都是收集尽可能多的关于所研究对象或现象的信息。在雷达目标的情况下,将频率和角度信息综合起来形成雷达图像,具有很高的信息量。本文采用了一种超分辨率技术(MUSIC 2D)来重建目标图像。建立了一个有监督的自组织神经网络,对消声室中10个不同雷达目标的图像进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信