The role of the superior order GLCM in improving the automatic diagnosis of the hepatocellular carcinoma based on ultrasound images

D. Mitrea, S. Nedevschi, R. Badea
{"title":"The role of the superior order GLCM in improving the automatic diagnosis of the hepatocellular carcinoma based on ultrasound images","authors":"D. Mitrea, S. Nedevschi, R. Badea","doi":"10.1109/TSP.2011.6043658","DOIUrl":null,"url":null,"abstract":"The hepatocellular carcinoma (HCC) is the most frequent malignant liver tumor. The golden standard for HCC diagnosis is the needle biopsy, but this is an invasive, dangerous method. We aim to develop computerized, non-invasive techniques for the automatic diagnosis of HCC, based on information obtained from ultrasound images. The texture is an important property of the internal organs tissue, able to provide subtle information about the pathology. We previously defined the textural model of HCC, consisting in the exhaustive set of the relevant textural features, appropriate for HCC characterization and in the specific values of these features. In this work, we analyze the role that the superior order Gray Level Cooccurrence Matrices (GLCM) and the associated parameters have in the improvement of HCC characterization and automatic diagnosis. We also determine the best spatial relation between the pixels that leads to the highest performances, for the third and fifth order GLCM.","PeriodicalId":341695,"journal":{"name":"2011 34th International Conference on Telecommunications and Signal Processing (TSP)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 34th International Conference on Telecommunications and Signal Processing (TSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSP.2011.6043658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The hepatocellular carcinoma (HCC) is the most frequent malignant liver tumor. The golden standard for HCC diagnosis is the needle biopsy, but this is an invasive, dangerous method. We aim to develop computerized, non-invasive techniques for the automatic diagnosis of HCC, based on information obtained from ultrasound images. The texture is an important property of the internal organs tissue, able to provide subtle information about the pathology. We previously defined the textural model of HCC, consisting in the exhaustive set of the relevant textural features, appropriate for HCC characterization and in the specific values of these features. In this work, we analyze the role that the superior order Gray Level Cooccurrence Matrices (GLCM) and the associated parameters have in the improvement of HCC characterization and automatic diagnosis. We also determine the best spatial relation between the pixels that leads to the highest performances, for the third and fifth order GLCM.
高阶GLCM在提高肝细胞癌超声图像自动诊断中的作用
肝细胞癌(HCC)是最常见的肝脏恶性肿瘤。HCC诊断的黄金标准是穿刺活检,但这是一种侵入性的、危险的方法。我们的目标是开发基于超声图像信息的计算机化、非侵入性的HCC自动诊断技术。纹理是内部器官组织的重要属性,能够提供有关病理的微妙信息。我们之前定义了HCC的纹理模型,包括适合HCC表征的相关纹理特征的详尽集以及这些特征的具体值。在这项工作中,我们分析了高阶灰度共生矩阵(GLCM)及其相关参数在改善HCC特征和自动诊断中的作用。我们还确定了导致最高性能的像素之间的最佳空间关系,用于三阶和五阶GLCM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信