Szilárd Vajda, D. You, Sameer Kiran Antani, G. Thoma
{"title":"Label the many with a few: Semi-automatic medical image modality discovery in a large image collection","authors":"Szilárd Vajda, D. You, Sameer Kiran Antani, G. Thoma","doi":"10.1109/CICARE.2014.7007850","DOIUrl":null,"url":null,"abstract":"In this paper we present a fast and effective method for labeling images in a large image collection. Image modality detection has been of research interest for querying multimodal medical documents. To accurately predict the different image modalities using complex visual and textual features, we need advanced classification schemes with supervised learning mechanisms and accurate training labels. Our proposed method, on the other hand, uses a multiview-approach and requires minimal expert knowledge to semi-automatically label the images. The images are first projected in different feature spaces, and are then clustered in an unsupervised manner. Only the cluster representative images are labeled by an expert. Other images from the cluster “inherit” the labels from these cluster representatives. The final label assigned to each image is based on a voting mechanism, where each vote is derived from different feature space clustering. Through experiments we show that using only 0.3% of the labels was sufficient to annotate 300,000 medical images with 49.95% accuracy. Although, automatic labeling is not as precise as manual, it saves approximately 700 hours of manual expert labeling, and may be sufficient for next-stage classifier training. We find that for this collection accuracy improvements are feasible with better disparate feature selection or different filtering mechanisms.","PeriodicalId":120730,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence in Healthcare and e-health (CICARE)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence in Healthcare and e-health (CICARE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICARE.2014.7007850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
In this paper we present a fast and effective method for labeling images in a large image collection. Image modality detection has been of research interest for querying multimodal medical documents. To accurately predict the different image modalities using complex visual and textual features, we need advanced classification schemes with supervised learning mechanisms and accurate training labels. Our proposed method, on the other hand, uses a multiview-approach and requires minimal expert knowledge to semi-automatically label the images. The images are first projected in different feature spaces, and are then clustered in an unsupervised manner. Only the cluster representative images are labeled by an expert. Other images from the cluster “inherit” the labels from these cluster representatives. The final label assigned to each image is based on a voting mechanism, where each vote is derived from different feature space clustering. Through experiments we show that using only 0.3% of the labels was sufficient to annotate 300,000 medical images with 49.95% accuracy. Although, automatic labeling is not as precise as manual, it saves approximately 700 hours of manual expert labeling, and may be sufficient for next-stage classifier training. We find that for this collection accuracy improvements are feasible with better disparate feature selection or different filtering mechanisms.