ARIA

Abhishek Verma, L. Cherkasova, R. Campbell
{"title":"ARIA","authors":"Abhishek Verma, L. Cherkasova, R. Campbell","doi":"10.1145/1998582.1998637","DOIUrl":null,"url":null,"abstract":"MapReduce and Hadoop represent an economically compelling alternative for efficient large scale data processing and advanced analytics in the enterprise. A key challenge in shared MapReduce clusters is the ability to automatically tailor and control resource allocations to different applications for achieving their performance goals. Currently, there is no job scheduler for MapReduce environments that given a job completion deadline, could allocate the appropriate amount of resources to the job so that it meets the required Service Level Objective (SLO). In this work, we propose a framework, called ARIA, to address this problem. It comprises of three inter-related components. First, for a production job that is routinely executed on a new dataset, we build a job profile that compactly summarizes critical performance characteristics of the underlying application during the map and reduce stages. Second, we design a MapReduce performance model, that for a given job (with a known profile) and its SLO (soft deadline), estimates the amount of resources required for job completion within the deadline. Finally, we implement a novel SLO-based scheduler in Hadoop that determines job ordering and the amount of resources to allocate for meeting the job deadlines.\n We validate our approach using a set of realistic applications. The new scheduler effectively meets the jobs' SLOs until the job demands exceed the cluster resources. The results of the extensive simulation study are validated through detailed experiments on a 66-node Hadoop cluster.","PeriodicalId":273510,"journal":{"name":"Proceedings of the 8th ACM international conference on Autonomic computing - ICAC '11","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"501","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th ACM international conference on Autonomic computing - ICAC '11","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1998582.1998637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 501

Abstract

MapReduce and Hadoop represent an economically compelling alternative for efficient large scale data processing and advanced analytics in the enterprise. A key challenge in shared MapReduce clusters is the ability to automatically tailor and control resource allocations to different applications for achieving their performance goals. Currently, there is no job scheduler for MapReduce environments that given a job completion deadline, could allocate the appropriate amount of resources to the job so that it meets the required Service Level Objective (SLO). In this work, we propose a framework, called ARIA, to address this problem. It comprises of three inter-related components. First, for a production job that is routinely executed on a new dataset, we build a job profile that compactly summarizes critical performance characteristics of the underlying application during the map and reduce stages. Second, we design a MapReduce performance model, that for a given job (with a known profile) and its SLO (soft deadline), estimates the amount of resources required for job completion within the deadline. Finally, we implement a novel SLO-based scheduler in Hadoop that determines job ordering and the amount of resources to allocate for meeting the job deadlines. We validate our approach using a set of realistic applications. The new scheduler effectively meets the jobs' SLOs until the job demands exceed the cluster resources. The results of the extensive simulation study are validated through detailed experiments on a 66-node Hadoop cluster.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信